
The Ames Stereo Pipeline:
NASA’s Open Source Automated Stereogrammetry Software

A part of the NASA NeoGeography Toolkit
Version 1.0.5

Michael J. Broxton
Ross A. Beyer

Zachary Moratto
Mike Lundy

Kyle Husmann

Intelligent Robotics Group
NASA Ames Research Center

October 27, 2011

ii

Credits

This open source version of the Ames Stereo Pipeline (ASP) was developed by the Intelligent Robotics
Group (IRG), in the Intelligent Systems Division at the National Aeronautics and Space Administra-
tion (NASA) Ames Research Center in Moffett Field, CA. It builds on over ten years of IRG experience
developing surface reconstruction tools for terrestrial robotic field tests and planetary exploration.

Principal Investigator, NASA Ames Planetary Mapping and Modeling Team

• Michael J. Broxton (NASA/Carnegie Mellon University)
michael.broxton@nasa.gov

Lead Developer & Stereo Pipeline Project Lead

• Zachary Moratto (NASA/Stinger-Ghaffarian Technologies)
z.m.moratto@nasa.gov

Development Team

• Dr. Ross Beyer (NASA/SETI Institute)

• Matthew Hancher (NASA)

• Kyle Husmann (Educational Associates Program/California Polytechnic State University)

• Mike Lundy (NASA/Stinger-Ghaffarian Technologies)

• Dr. Ara Nefian (NASA/Carnegie Mellon University)

• Alex Segal (Educational Associates Program/Stanford University)

• Vinh To (NASA/Stinger-Ghaffarian Technologies)

Contributing Developer & Former IRG Terrain Reconstruction Lead:

• Dr. Laurence Edwards (NASA)

A number of student interns have made significant contributions to this project over the years: Sasha
Aravkin (Washington State University), Aleksandr Segal (Stanford), Patrick Mihelich (Stanford University),
Melissa Bunte (Arizona State University), Matthew Faulkner (Massachusetts Institute of Technology), Todd
Templeton (UC Berkeley), Morgon Kanter (Bard College), Kerri Cahoy (Stanford University), and Ian
Saxton (UC San Diego).

iii

The open source Stereo Pipeline leverages stereo image processing work, past and present, led by Dr.
Laurence Edwards, Eric Zbinden (formerly NASA/QSS Inc.), Dr. Michael Sims (NASA), and others in
the Intelligent Systems Division at NASA Ames Research Center. It has benefited substantially from the
contributions of Dr. Keith Nishihara (formerly NASA/Stanford), Randy Sargent (NASA/Carnegie Mellon
University), Dr. Judd Bowman (formerly NASA/QSS Inc.), Clay Kunz (formerly NASA/QSS Inc.), and
Dr. Matthew Deans (NASA).

Acknowledgments

The initial adaptation of Ames’ stereo surface reconstruction tools to orbital imagers was a result of a NASA
funded, industry led project to develop automated digital elevation model (DEM) generation techniques for
the Mars Global Surveyor (MGS) mission. Our work with that project’s Principle Investigator, Dr. Michael
Malin of Malin Space Science Systems (MSSS), and Co-Investigator, Dr. Laurence Edwards of NASA Ames,
inspired the idea of making stereo surface reconstruction technology available and accessible to a broader
community. We thank Dr. Malin and Dr. Edwards for providing the initial impetus that in no small way
made this open source stereo pipeline possible, and we thank Dr. Michael Caplinger, Joe Fahle and others
at MSSS for their help and technical assistance.

We’d also like to thank our friends and collaborators Dr. Randolph Kirk, Dr. Brent Archinal, Trent Hare, and
Mark Rosiek of the United States Geological Survey’s (USGS’s) Astrogeology Science Center in Flagstaff,
AZ, for their encouragement and willingness to share their experience and expertise by answering many of
our technical questions. We also thank them for their ongoing support and efforts to help us evaluate our
work. Thanks also to the USGS Integrated Software for Imagers and Spectrometers (ISIS) team, especially
Jeff Anderson and Kris Becker, for their help in integrating this version of the stereo pipeline with the
USGS ISIS software package.

Thanks go also to Dr. Mark Robinson, Jacob Danton, Ernest Bowman-Cisneros, Dr. Sam Laurence, and
Melissa Bunte at Arizona State University for their help in adapting the Ames’ stereo pipeline to lunar
data sets including the Apollo Metric Camera.

Finally, we thank Melissa Bunte, Dr. Ara Nefian, and Dr. Laurence Edwards for their contributions to this
documentation, and Dr. Terry Fong (IRG Group Lead) for his management and support of the open source
and public software release process.

Portions of this software were developed with support from the following NASA Science Mission Directorate
(SMD) and Exploration Systems Mission Directorate (ESMD) funding sources: the Mars Technology Pro-
gram, the Mars Critical Data Products Initiative, the Mars Reconnaissance Orbiter mission, the Applied
Information Systems Research program grant #06-AISRP06-0142, the Lunar Advanced Science and Ex-
ploration Research (LASER) program grant #07-LASER07-0148, and the ESMD Lunar Mapping and
Modeling Program (LMMP).

Any opinions, findings, and conclusions or recommendations expressed in this documentation are those of
the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Human vs. Computer: When to Choose Automation . 2

1.3 Software Foundations . 3

1.3.1 NASA Vision Workbench . 3

1.3.2 The USGS Integrated Software for Imagers and Spectrometers 3

1.4 Getting Help . 4

1.5 Typographical Conventions . 4

1.6 Referencing the Ames Stereo Pipeline in your own work . 5

1.7 Warnings to users of the Ames Stereo Pipeline . 5

I Getting Started 7

2 Installation 9

2.1 Binary Installation . 9

2.1.1 Quick Start . 9

2.1.2 Common Traps . 10

2.2 Source Installation . 11

2.2.1 Dependency List . 11

2.2.2 Build System . 12

2.3 Settings Optimization . 14

3 Tutorial: Processing Mars Orbiter Camera Imagery 17

3.1 Quick Start . 17

3.2 Preparing the Data . 17

3.2.1 Loading and Calibrating Images using ISIS . 17

3.2.2 Aligning Images . 18

3.3 Running the Stereo Pipeline . 20

v

CONTENTS

3.3.1 Setting Options in the stereo.default File . 20

3.3.2 Performing Stereo Correlation . 21

3.3.3 Diagnosing Problems . 21

3.4 Visualizing the Results . 24

3.4.1 Building a 3D Model . 24

3.4.2 Building a Digital Elevation Model . 24

3.4.3 Generating Color Hillshade Maps . 26

3.4.4 Building Overlays for Moon and Mars mode in Google Earth 27

II The Stereo Pipeline in Depth 29

4 Correlation 31

4.1 Pre-processing . 31

4.2 Disparity Map Initialization . 33

4.2.1 Debugging Disparity Map Initialization . 33

4.3 Sub-pixel Refinement . 34

4.4 Triangulation . 36

5 Bundle Adjustment 39

5.0.1 A deeper understanding . 40

5.1 Performing bundle adjustment with isis_adjust . 41

5.1.1 Options . 42

5.2 Visualizing bundle adjustment with bundlevis . 44

5.2.1 Options . 45

5.2.2 Controls . 46

5.3 Examples of Use . 47

5.3.1 Processing Mars Orbital Camera . 47

5.3.2 Processing with Ground Control Points . 49

5.3.3 Sharing Data with ISIS 3’s qnet program . 50

6 Data Processing Examples 51

6.1 Guidelines for Selecting Stereo Pairs . 51

6.1.1 Combatting long run times . 51

6.1.2 Comparing Examples to your System . 52

6.2 Mars Reconnaissance Orbiter HiRISE . 53

6.2.1 Columbia Hills . 54

vi

6.2.2 East Mareotis Tholus . 57

6.2.3 North Terra Meridiani Crop . 59

6.3 Mars Reconnaissance Orbiter CTX . 60

6.3.1 North Terra Meridiani . 61

6.4 Mars Global Surveyor MOC-NA . 63

6.4.1 Ceraunius Tholus . 63

6.4.2 North Tharsis . 65

6.5 Lunar Reconaissance Orbiter LROC NAC . 67

6.5.1 Lee-Lincoln Scarp . 67

6.6 Apollo 15 Metric Camera Images . 68

6.6.1 Ansgarius C . 69

6.7 MESSENGER MDIS . 71

6.7.1 Wide Angle on flyby 2 . 71

6.8 Cassini ISS NAC . 73

6.8.1 Rhea . 73

III Appendices 77

A Tools 79

A.1 stereo . 79

A.1.1 Entry Points . 80

A.1.2 Decomposition of Stereo . 80

A.2 disparitydebug . 80

A.3 point2dem . 81

A.4 point2mesh . 82

A.5 orbitviz . 84

A.6 isis_adjust . 85

A.7 bundlevis . 86

A.8 cam2map4stereo.py . 87

B The stereo.default File 89

B.1 Preprocessing . 89

B.2 Correlation . 91

B.3 Filtering . 92

B.4 Post-Processing . 93

C Guide to Output Files 95

vii

CONTENTS

D Modifying SURF to output VW match files 97

D.1 How to apply and compile . 97

D.2 Example of using SURF . 97

Bibliography 99

viii

Chapter 1

Introduction

The NASA Ames Stereo Pipeline (ASP) is a suite of automated geodesy and stereogrammetry tools designed
for processing planetary imagery captured from orbiting and landed robotic explorers on other planets. It
was designed to process stereo imagery captured by NASA spacecraft and produce cartographic products
including digital elevation models (DEMs), ortho-projected imagery, and 3D models. These data products
are suitable for science analysis, mission planning, and public outreach.

1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D surface
reconstruction and visualization capabilities for planetary exploration for more than a decade. First demon-
strated during the Mars Pathfinder Mission, the IRG has delivered tools providing these capabilities to the
science operations teams of the Mars Polar Lander (MPL) mission, the Mars Exploration Rover (MER)
mission, the Mars Reconnaissance Orbiter (MRO) mission, and most recently the Lunar Reconnaissance Or-
biter (LRO) mission. A critical component technology enabling this work is the Ames Stereo Pipeline (ASP).
The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface models from stereo image
pairs.

Although initially developed for ground control and scientific visualization applications, the Stereo Pipeline
has evolved in recent years to address orbital stereogrammetry and cartographic applications. In particu-
lar, long-range mission planning requires detailed knowledge of planetary topography, and high resolution
topography is often derived from stereo pairs captured from orbit. Orbital mapping satellites are sent as
precursors to planetary bodies in advance of landers and rovers. They return a wealth of imagery and other
data that helps mission planners and scientists identify areas worthy of more detailed study. Topographic
information often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping
missions are returning orders of magnitude more data than ever before. Data volumes from the Mars and
Lunar Reconnaissance Orbiter missions now measure in the tens of Terabytes. There is growing consensus
that existing processing techniques, which are still extremely human intensive and expensive, are no longer
adequate to address the data processing needs of NASA and the Planetary Science community. To pick
an example of particular relevance, the High Resolution Imaging Science Experiment (HiRISE) Web site
lists 1525 stereo pairs at the time of this writing [20]. Of these, only a few tens of stereo pairs have been
processed to date; mostly on human-operated, high-end photogrammetric workstations. It is clear that
much more value could be extracted from this valuable raw data if a more streamlined, efficient process
could be developed.

1

Chapter 1

Figure 1.1: This 3D model was generated from a Mars Orbiter Camera (MOC) image pair M01/00115
and E02/01461 (34.66N, 141.29E). The complete stereo reconstruction process takes approximately thirty
minutes on a 3.0 GHz workstation for input images of this size (1024 × 8064 pixels). This model, shown
here without vertical exaggeration, is roughly 2 km wide in the cross-track dimension.

The Stereo Pipeline was designed to address this very need. By applying recent advances in robotics and
computer vision, we have created an automated process that is capable of generating high quality DEMs
with minimal human intervention. Users of the Stereo Pipeline can expect to spend some time picking
a handful of settings when they first start processing a new type of imagery, but once this is done the
Stereo Pipeline can be used to process tens, hundreds, or even thousands of stereo pairs without further
adjustment. With the release of this software, we hope to encourage the adoption of this tool chain at
institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines.
As this tool continues to mature, we believe that it will be capable of producing digital elevation models of
exceptional quality without any human intervention.

1.2 Human vs. Computer: When to Choose Automation

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated
photogrammetric workstation? This is a philosophical question with an answer that is likely to evolve over
the coming years as automated data processing technologies become more robust and widely adopted. For
now, our opinion is that you should always rely on human-guided, manual data processing techniques for
producing mission critical data products for missions where human lives or considerable capital resources
are at risk. In particular, maps for landing site analysis and precision landing absolutely require the benefit
of an expert human operator to eliminate obvious errors in the DEM; and also to guarantee that the proper
procedures have been followed to correct satellite telemetry errors so that the data have the best possible
geodetic control.

When it comes to using DEMs for scientific analysis, both techniques have their merits. Human-guided

2

Introduction

stereo reconstruction produces DEMs of unparalleled quality that benefit from the intuition and experience
of an expert. The process of building and validating these DEMs is well established and accepted in the
scientific community.

However, only a limited number of DEMs can be processed to this level of quality. For the rest, automated
stereo processing can be used to produce DEMs at a fraction of the cost. The results are not necessarily
less accurate than those produced by the human operator, but they will not benefit from the same level of
scrutiny and quality control. As such, users of these DEMs must be able to identify potential issues, and
be on the lookout for errors that may result from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation
and build an understanding of how stereo reconstruction and bundle adjustment can be best used together
to produce high quality results. Please don’t hesitate to contact us if you have any questions!

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the Vision Workbench software which is a general purpose image processing
and computer vision library also developed by the IRG. Some of the tools discussed in this document
are actually Vision Workbench programs, but any distribution of the Stereo Pipeline requires the Vision
Workbench. Unless you’re compiling the Vision Workbench and Stereo Pipeline from source, the distinctions
probably won’t matter to you.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

This version of the Stereo Pipeline must be installed alongside a compatible version of the United States
Geological Survey (USGS) Integrated Software for Imagers and Spectrometers (ISIS). ISIS is widely used
in the planetary science community for processing raw spacecraft imagery into high level data products of
scientific interest such as map projected and mosaicked imagery [1, 8, 21]. We chose ISIS because (1) it is
widely adopted by the planetary science community, (2) it contains the authoritative collection of geometric
camera models for planetary remote sensing instruments, and (3) it is open source software that is easy to
leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that
can be used in your existing ISIS work flow. The Stereo Pipeline supports the ISIS “cube” (.cub) file format,
and can make use of the ISIS camera models and ancillary information (i.e. SPICE kernels) for imagers
on many NASA spacecraft. The use of this single standardized set of camera models ensures consistency
between products generated in the Stereo Pipeline and those generated by ISIS. Also by leveraging ISIS
camera models, the Stereo Pipeline can process stereo pairs captured by just about any NASA mission.

As an additional note, the Stereo Pipeline can also process arbitrary, non-ISIS images with accompanying
camera information, but doing so requires a significant amount of extra work and setup. This advanced
use of the software is not covered in this user’s manual, however feel free to contact us if you are interested
in learning more about adapting the pipeline to other stereo data sets.

3

Chapter 1

1.4 Getting Help

All bugs, feature requests, and general discussion should be sent to the Ames Stereo Pipeline user mailing
list:

stereo-pipeline@lists.nasa.gov

To subscribe to this list, send an empty email message with the subject ‘subscribe’ (without the quotes) to:

stereo-pipeline-request@lists.nasa.gov

To contact the lead developers and project manager directly, send mail to:

stereo-pipeline-owner@lists.nasa.gov

1.5 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font,
like the stereo program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with
a ‘>’ to denote a regular shell, or with ‘ISIS’ which denotes an ISIS-enabled shell (which means you have
to set the ISISROOT environment variable and sourced the appropriate ISIS 3 Startup script, as detailed in
the ISIS 3 instructions).

> ls

ISIS 3> pds2isis

Italicized constant-width text denotes an option or argument that a user will need to supply. For example,
‘stereo E0201461.map.cub M0100115.map.cub out’ is specific, but ‘stereo left-image right-image
out’ indicates that left-image and right-image are not the names of specific files, but dummy pa-
rameters which need to be replaced with actual file names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are
either aliases for each other, or different, specific options. Default arguments are prefixed by an equals sign
within parentheses, and line continuation with a backslash:

point2dem [--help|-h] [-r moon|mars] [-s float(=0)] \
[-o output-filename] pointcloud -PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud
file, which is produced by the stereo program and ends in -PC.tif, although its prefix could be anything
(hence the italics for that part). Everything else is in square brackets indicating that they are optional.

Both --help and -h are really the same thing (both will get you help). Similarly, the argument to the -r
option must be either moon or mars. The -s option takes a floating point value as its argument, and has a
default value of zero. The -o option takes a filename that will be used as the output DEM.

Although there are two lines of constant-width text, the backslash at the end of the first line indicates
that the command continues on the second line. You can either type everything into one long line on your
own terminal, or use the backslash character (or appropriate line continuation character) and a return to
continue typing on a second line in your terminal.

4

mailto:stereo-pipeline@lists.nasa.gov
mailto:stereo-pipeline-request@lists.nasa.gov
mailto:stereo-pipeline-owner@lists.nasa.gov

Introduction

1.6 Referencing the Ames Stereo Pipeline in your own work

Although no peer-reviewed paper or report yet exists which details the Ames Stereo Pipeline (see the
warning below about this being RESEARCH software), if you do use this software in your work, we’d
appreciate it if you referenced one or more of these abstracts:

Moratto, Z. M., M. J. Broxton, R. A. Beyer, M. Lundy, and K. Husmann. 2010. Ames Stereo Pipeline,
NASA’s Open Source Automated Stereogrammetry Software. Lunar and Planetary Science Confer-
ence 41, abstract #2364. [ADS Abstract].

Broxton, M. J. and L. J. Edwards. 2008. The Ames Stereo Pipeline: Automated 3D Surface Recon-
struction from Orbital Imagery. Lunar and Planetary Science Conference 39, abstract #2419. [ADS
Abstract].

1.7 Warnings to users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a RESEARCH product. There are known bugs and incomplete features. We
reserve the ability to change the API and command line options of the tools we provide. Some of the
documentation is incomplete and some of it may be out of date or incorrect. Although we hope you will
find this release helpful, you use it at your own risk. Please check each release’s NEWS file to see a
summary of our recent changes.

While we are confident that the algorithms used by this software are robust, they have not been systemat-
ically tested or rigorously compared to other methods in the peer-reviewed literature. We have a number
of efforts underway to carefully compare Stereo Pipeline-generated data products to those produced us-
ing established processes, and we will publish those results as they become available. In the meantime,
we strongly recommend that you consult us first before publishing any results based on the
cartographic products produced by this software. You have been warned!

5

http://adsabs.harvard.edu/abs/2010LPI....41.2364M
http://adsabs.harvard.edu/abs/2008LPI....39.2419B
http://adsabs.harvard.edu/abs/2008LPI....39.2419B

6

Part I

Getting Started

7

Chapter 2

Installation

2.1 Binary Installation

This is the recommended method. Only two things are required:

Stereo Pipeline Tarball. The main Stereo Pipeline page is
http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/ngt/stereo/. Download the Binary
option that matches the platform you wish to use. The required ISIS version is listed next to the
name; choose the newest version you have available.

USGS ISIS Binary Distribution. The Stereo Pipeline depends on ISIS version 3 from the USGS. Their
installation guide is at http://isis.astrogeology.usgs.gov/documents/InstallGuide. You must
use their binaries as-is; if you need to recompile, you must follow the Source Installation guide for
the Stereo Pipeline in Section 2.2. Note also that the USGS provides only the current version of ISIS
and the previous version (denoted with a ‘_OLD’ suffix) via their rsync service. If the current version
is newer than the version of ISIS that the Stereo Pipeline is compiled against, be assured that we’re
working on rolling out a new version. In the meantime, you should be able to sync the previous
version of ISIS which should work with Stereo Pipeline. To do so, view the listing of modules that is
provided via the ‘rsync isisdist.wr.usgs.gov::’ command. You should see several modules listed
with the ‘_OLD’ suffix. Select the one that is appropriate for your system, and rsync according to the
instructions.

If you have a need to keep current with ISIS, but don’t want to loose the ability to use Stereo Pipeline
while we update our binaries to the new current version of ISIS, you may wish to retain the version
of ISIS that matches your version of Stereo Pipeline.

2.1.1 Quick Start

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://ti.arc.nasa.gov/stereopipeline.

Fetch ISIS Binaries
rsync -azv --delete isisdist.wr.usgs.gov::isis3_ARCH_OS_VERSION /isis .

Fetch ISIS Data
rsync -azv –delete isisdist.wr.usgs.gov::isis3data/data/base data/
rsync -azv –delete isisdist.wr.usgs.gov::isis3data/data/MISSION data/

9

http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/ngt/stereo/
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://ti.arc.nasa.gov/stereopipeline

Chapter 2

Untar Stereo Pipeline
tar xzvf StereoPipeline-VERSION-ARCH-OS.tar.gz

Add Stereo Pipeline to Path (optional)
bash: export PATH="/path/to/StereoPipeline /bin:${PATH}"
csh: setenv PATH "/path/to/StereoPipeline /bin:${PATH}"

Set Up Isis
bash:

export ISISROOT=/path/to/isisroot
source $ISISROOT/scripts/isis3Startup.sh

csh:
setenv ISISROOT /path/to/isisroot
source $ISISROOT/scripts/isis3Startup.csh

Try It Out!
See the next chapter (Chapter 3) for an example!

2.1.2 Common Traps

Here are some errors you might see, and what it could mean. Treat these as templates for problems–in
practice, the error messages might be slightly different.

stereo: error while loading shared libraries: libisis3.so:
cannot open shared object file: No such file or directory

You just need to set up your ISIS environment.

dyld: Library not loaded: $ISISROOT/lib/libisis3.dylib
Referenced from: /some/path/goes/here/bin/program
Reason: image not found Trace/BPT trap

You just need to set up your ISIS environment.

point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif
[...]
99% Vertices: [**] Complete!

> size: 82212 vertices
Drawing Triangle Strips
Attaching Texture Data
zsh: bus error point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif

The source of this problem is an old version of OpenSceneGraph in your library path. Check your
LD_LIBRARY_PATH (for Linux), DYLD_LIBRARY_PATH (for OSX), or your DYLD_FALLBACK_LIBRARY_PATH (for
OSX) to see if you have an old version listed, and remove it from the path if that is the case. It is not
necessary to remove the old versions from your computer, you just need to remove the reference to them
from your library path.

10

Installation

2.2 Source Installation

This method is for advanced users with moderate build system experience. Some dependencies such as ISIS
and its dependencies (like SuperLU, Qwt, CSpice) use custom build systems. Because of this and time, we
won’t help with questions on how to build dependencies.

2.2.1 Dependency List

This is a list of the direct dependencies of Stereo Pipeline. Some libraries (like ISIS) have dependencies of
their own which are not covered here.

Figure 2.1: Graph outlining some dependencies. Not all of ISIS’s are shown.

Boost (Required) http://www.boost.org/
Version 1.35 or greater is required. Along with the base library set, the Stereo Pipeline specifically
requires: Program Options, Filesystem, Thread, and Graph.

LAPACK (Required)
There are many sources for LAPACK. For OSX, you can use the vecLib framework. For Linux,
you can use the netlib LAPACK/CLAPACK distributions, or Intel’s MKL, or any of a number of
others. The math is unfortunately not a hotspot in the code, though, so using a faster LAPACK
implementation will not change much. Therefore, you should probably just use the LAPACK your
package manager (RPM for Red Hat Linux, Yast for SuSE, etc.) has available.

ISIS (Recommended) http://isis.astrogeology.usgs.gov/documents/InstallGuide

The USGS Integrated Software for Imagers and Spectrometers (ISIS) library. This library handles
the camera models and image formats used for instruments. ISIS is usually downloaded and used
as a binary distribution. Compilation of ISIS from source can be challenging, and their support
forums may provide assistance: https://isis.astrogeology.usgs.gov/IsisSupport/. Cleaning
and modification of their source code maybe required if you would like to use a newer version of ISIS’s
dependencies that may be available already by your system.

Because of the extreme difficulty of building ISIS (since most problems will needed be sorted out by
the user themselves), it is not recommended that users try to build ISIS themselves. This leaves users
the only option of using ISIS and ASP binaries that are available online.

OpenSceneGraph (Optional) http://www.openscenegraph.org/

11

http://www.boost.org/
http://isis.astrogeology.usgs.gov/documents/InstallGuide
https://isis.astrogeology.usgs.gov/IsisSupport/
http://www.openscenegraph.org/

Chapter 2

OpenSceneGraph is required to run the point2mesh tool (See Section A.4). This library provides
a convenient way of building OpenGL graphics through the method of scene graphs. It also pro-
vides a file format and utilities for display these scene graphs. The output file of point2mesh is an
OpenSceneGraph binary scene graph format.

Vision Workbench (Required) http://ti.arc.nasa.gov/visionworkbench/

Vision Workbench forms much of the core processing code of the Stereo Pipeline. Vision Workbench
contains almost all of the image processing algorithms, such as image filters, image arithmetic, stereo
correlation, and triangulation. This means that Stereo Pipeline is just a collection of applications
that implement Vision Workbench in the context of ISIS.

Python 2.4+ (Required) http://www.python.org

Some applications of Stereo Pipeline are actually python scripts.

2.2.2 Build System

The build system is built on GNU autotools. In-depth information on autotools is available from http:
//sources.redhat.com/autobook/. The basics, however, are simple. To compile the source code, first
run ./configure from the top-level directory. This will search for the dependencies and enable the modules
you requested. There are a number of options that can be passed to configure; many of these options
can also be placed into a config.options file (in the form of VARIABLE="VALUE") in the same directory as
configure. Table 2.2 lists the supported options.

12

http://ti.arc.nasa.gov/visionworkbench/
http://www.python.org
http://sources.redhat.com/autobook/
http://sources.redhat.com/autobook/

Installation

Variable Name Configure option Default Function

PREFIX --prefix /usr/local Set the install prefix (ex: bina-
ries will go in $PREFIX/bin)

HAVE_PKG_XXX --with-xxx auto
Set to “no” to disable package
XXX, or a path to only search
that path

PKG_PATHS --with-pkg-paths many Prepend to default list of
search paths

ENABLE_PKG_PATHS_DEFAULT --enable-pkg-paths-default yes Append built-in list of search
paths

ENABLE_OPTIMIZE --enable-optimize 3 Level of compiler optimiza-
tion?

ENABLE_DEBUG --enable-debug no How much debug informa-
tion?

ENABLE_CCACHE --enable-ccache no Use ccache if available

ENABLE_RPATH --enable-rpath no Set RPATH on built binaries
and libraries

ENABLE_ARCH_LIBS --enable-arch-libs no
Pass in 64 or 32 to look for
libraries by default in lib64 or
lib32

ENABLE_PROFILE --enable-profile no Use function profiling?

PKG_XXX_CPPFLAGS
Append value to CPPFLAGS
for package XXX

PKG_XXX_LDFLAGS
Prepend value to LDFLAGS
for package XXX

PKG_XXX_LIBS
Override the required libraries
for package XXX

PKG_XXX_MORE_LIBS
Append to required libraries
for package XXX

ENABLE_EXCEPTIONS --enable-exceptions yes Use C++ exceptions? Disable
at own risk.

ENABLE_MULTI_ARCH --enable-multi-arch no
OSX Only: Build Fat binary
with space-separated list of
arches

ENABLE_AS_NEEDED --enable-as-needed no Pass –as-needed to GNU
linker. Use at your own risk.

Table 2.2: Supported configure options

13

Chapter 2

2.3 Settings Optimization

Finally the last thing to be done for Stereo Pipeline is to setup up Vision Workbench’s render settings.
This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multithreaded image processing library used by Stero Pipeline. The settings by
which Vision Workbench processes is configurable by having a /.vwrc file hidden in your home directory.
Below is an example of one used on a Mac Pro workstation.

1 # This is an example VW log configuration file. Save
2 # this file to ~/.vwrc to adjust the VW log
3 # settings, even if the program is already running.
4 #
5 # The following integers are associated with the
6 # log levels throughout the Vision Workbench. Use
7 # these in the log rules below.
8 #
9 # ErrorMessage = 0

10 # WarningMessage = 10
11 # InfoMessage = 20
12 # DebugMessage = 30
13 # VerboseDebugMessage = 40
14 # EveryMessage = 100
15 #
16 # You can create a new log file or adjust the settings
17 # for the console log:
18 #
19 # logfile <filename>
20 # - or -
21 # logfile console
22 #
23 # Once you have created a logfile (or selected the
24 # console), you can add log rules using the following
25 # syntax. (Note that you can use wildcard characters
26 # ’*’ to catch all log_levels for a given log_namespace,
27 # or vice versa.)
28 #
29 # <log_level> <log_namespace>
30 #
31 # Example: For the console log, turn on InfoMessage
32 # logging for the thread sub-system and log every
33 # message from the cache sub-system.
34
35 [general]
36 default_num_threads = 16
37 write_pool_size = 40
38 system_cache_size = 1024000000 # ~ 1 GB
39
40 [logfile console]
41 20 = thread
42 * = cache
43 # Below turns off all progress bars to the console.
44 0 = *.progress

There are a lot of possible options that can be implemented in the above example. Let’s cover the most
important options and the concerns the user should have when selecting a value.

14

Installation

default_num_threads (default=2)

This sets the maximium number of threads that can being used for rendering. When stereo’s
subpixel_rfne is running you’ll probably notice 10 threads are running when you have default_num_threads
set to 8. This is not an error, you are seeing 8 threads be used for rendering, 1 thread for holding
main()’s execution, and finally 1 optional thread acting as the interface to the file driver.
It is usually best to set this parameter equal to the number of processors on your systems. Be sure to
include the number of logical processors in your arithmetic if your system supports hyper-threading.
Adding more threads for rasterization increases the memory demands of Stereo Pipeline. If your
system is memory limited, it might be best to lower the default_num_threads option. Remember
that 32 bit systems can only allocate 4 GB of memory per process. Despite Stereo Pipeline being a
multithreaded application, it is still a single process.

write_pool_size (default=21)

The write_pool_size option represents the max waiting pool size of tiles waiting to be written to
disk. Most file formats do not allow tiles to be written arbitrarily out of order. Most however will
let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the ’write
pool’ before it can be written to disk. If the ’write pool’ fills up, only the next tile in order can be
rasterized. That makes Stereo Pipeline perform like it is only using a single processor.
Increasing the write_pool_size makes Stereo Pipeline more able to use all processing cores in the sys-
tem. Having this value too large can mean excessive use of memory. For 32 bit systems again, they can
run out of memory if this value is too high for the same reason as described for default_num_threads.

system_cache_size (default=805306368)

Accessing a file from hard drive can be very slow. It is especially bad if an application needs to make
multiple passes over an input file. To increase performance, Vision Workbench will usually leave an
input file stored in memory for quick access. This file storage is known as the ’system cache’ and its
max size is dictated by system_cache_size. The default value is 768 MB.
Setting this value too high can cause your application to crash. It is usually recommend to keep this
value around 1/4 of the maximum available memory on the system. For 32 bit systems, this means
don’t set this value any greater than 1 GB. The units of this property is in bytes.

0 = *.progress

This line is not assigning a value to progress, it is however setting the logging level of progress bars.
In the above example, this statement is made under the [logfile console] state. This means that
only progress bars of type ErrorMessage will ever be printed to the console. If you wanted progress
bars up to type InfoMessage, then the line in log file should be changed to:

[logfile console]
20 = *.progress

15

16

Chapter 3

Tutorial: Processing Mars Orbiter Camera

Imagery

3.1 Quick Start

The Stereo Pipeline package contains command-line programs that convert a stereo pair in ISIS cube format
into a 3D “point cloud” image: stereo-output -PC.tif. This is an intermediate format that can be passed
along to one of several programs that convert a point cloud into a mesh for 3D viewing or a gridded digital
elevation model for GIS purposes.

There are a number of ways to fine-tune parameters and analyze the results, but ultimately this software
suite takes images and builds models in a mostly automatic way. To create a point cloud file, you simply
pass two image files to the stereo command:

ISIS 3> stereo image_file1 image_file2 stereo-output

You can then make a mesh or a DEM file with the following commands. The stereo-output -PC.tif and
stereo-output -L.tif files are created by the stereo program above:

ISIS 3> point2mesh stereo-output -PC.tif stereo-output -L.tif

ISIS 3> point2dem stereo-output -PC.tif stereo-output -L.tif

3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of MOC [11, 10] images whose
Planetary Data System (PDS) Product IDs are M01/00115 and E02/01461. This data can be downloaded
from the PDS directly, or they can be found in the data/MOC/ or the examples/MOC/ directory of your
Stereo Pipeline distribution.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment
and radiometrically calibrated. You will need to be in an ISIS environment (have set the ISISROOT envi-
ronment variable and sourced the appropriate ISIS 3 Startup script, as detailed in the ISIS 3 instructions;
we will denote this state with the ‘ISIS 3>’ prompt). Then you can use the mocproc program, like so:

17

Chapter 3

Figure 3.1:
This figure shows
E0201461.cub and
M0100115.cub open
in ISIS’s qview
program. The view
on the left shows
their full extents
at the same zoom
level, showing how
they have different
ground scales. The
view on the right
shows both images
zoomed in on the
same feature.

ISIS 3> mocproc from= M0100115.imq to= M0100115.cub Mapping= NO
ISIS 3> mocproc from= E0201461.imq to= E0201461.cub Mapping= NO

There are also Ingestion and Calibration parameters whose defaults are ‘YES’ which will bring the image
into the ISIS format and perform radiometric calibration. By setting the Mapping parameter to ‘NO’ the
resultant file will be an ISIS cube file that is calibrated, but not map-projected. Note that while we have
not explicitly run spiceinit, the Ingestion portion of mocproc quietly ran spiceinit for you (you’ll find
the record of it in the ISIS Session Log, usually written out to a file named print.prt). Refer to Figure 3.1
to see the results at this stage of processing.

3.2.2 Aligning Images

The images also need to be rectified (or aligned). There are many ways to do this (including using
DO_INTERESTPOINT_ALIGNMENT in stereo’s stereo.default file). The most straightforward process is
to align the images by map projecting them in ISIS. This example continues with the files from above,
E0201461.cub and M010015.cub.

This section describes the theory behind doing each of these steps, but we also provide the cam2map4stereo.py
program (page 87) which performs these steps automatically for you.

The ISIS cam2map program will map-project these images:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub
ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The first projection with M0100115.cub
produced a map-projected image centered on the center of that image. The projection of E0201461.cub
used the map= parameter to indicate that cam2map should use the same map projection parameters as
those of M0100115.map.cub (including center of projection, map extents, map scale, etc.) in creating the

18

Tutorial: Processing Mars Orbiter Camera Imagery

projected image. By map projecting the image with the worse resolution first, and then matching to that,
we ensure two things: (1) that the second image is summed or scaled down instead of being magnified up,
and (2) that we are minimizing the file sizes to make processing in the Stereo Pipeline more efficient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and
extracting their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct
bundle adjustment (see Chapter 5, page 39) as a pre-processing step, you would do so between mocproc (as
run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have
a pair of images where one image has a footprint on the ground that is much larger than the other, only the
area that is common to both (the intersection of their areas) should be kept to perform correlation (since
non-overlapping regions don’t contribute to the stereo solution). If the image with the larger footprint size
also happens to be the image with the better resolution (i.e. the image run through cam2map second with
the map= parameter), then the above cam2map procedure with matchmap=true will take care of it just fine.
Otherwise you’ll need to figure out the latitude and longitude boundaries of the intersection boundary (with
the ISIS camrange program). Then use that smaller boundary as the arguments to the MINLAT, MAXLAT,
MINLON, and MAXLON parameters of the first run of cam2map. So in the above example, after mocproc with
Mapping= NO you’d do this:

ISIS 3> camrange fr= M0100115.cub
[... lots of camrange output omitted ...]

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.079818835324
MaximumLatitude = 34.436797628116
MinimumLongitude = 141.50666207418
MaximumLongitude = 141.62534719278

End_Group
[... more output of camrange omitted ...]

ISIS 3> camrange fr= E0201461.cub
[... lots of camrange output omitted ...]

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.103893080982
MaximumLatitude = 34.547719435156
MinimumLongitude = 141.48853937384
MaximumLongitude = 141.62919740048

End_Group
[... more output of camrange omitted ...]

Now compare the boundaries of the two above and determine the intersection to use as the boundaries for
cam2map:

19

Chapter 3

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE= CAMERA \
MINLAT= 34.10 MAXLAT= 34.44 MINLON= 141.50 MAXLON= 141.63

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the first run of cam2map, because the second one uses the
map= parameter to mimic the map projection of the first. These two images aren’t radically different in
areal coverage, so this isn’t really necessary for these images, its just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page 87) will
take care of all these steps for you.

3.3 Running the Stereo Pipeline

Once the data has been prepared for processing, we invoke the the stereo program (page 79). The stereo
program can generate a number of output files, and you may find it helpful to create a directory to store
the results of stereo processing, as illustrated below.

ISIS 3> ls
E0201461.cub E0201461.map.cub M0100115.cub M0100115.map.cub
ISIS 3> mkdir results

3.3.1 Setting Options in the stereo.default File

The stereo program requires a stereo.default file that contains settings that effect the stereo reconstruc-
tion process. Its contents can be altered for your needs; details are found in appendix B on page 89. You
may find it useful to save multiple versions of the stereo.default file for various processing needs. If you
do this, be sure to specify a configuration file by invoking stereo with the -s option. If this option is not
given, the stereo program will search for a file named stereo.default in the current working directory.

There is a stereo.default file included with the example data set that is different from the example
stereo.default.example file distributed with the Stereo Pipeline. The stereo.default included with the
example data has a smaller correlation window (smaller values for the H_CORR_* and V_CORR_* variables)
that is more suited to the MOC data.

Alternatively, it is possible to not have to define the H_CORR_* and V_CORR_* in stereo.default. If no
such options are specified, stereo will attempt to guess the correct search range. The guess is printed along
with the rest of the program output. If this technique does not produce satisfactory results, then it can at
least be used as a starting point for picking a better search range by hand.

For this example use the stereo.default that is included with the example data set. It has these key
properties:

DO_INTERESTPOINT_ALIGNMENT 0
H_CORR_MIN -35
H_CORR_MAX -15
V_CORR_MIN -280
V_CORR_MAX -265

The first says, ‘Don’t do interest point alignment!’ since we have map-projected the images. The other
four lines define the range that should be searched by scanning a template from the left image over the

20

Tutorial: Processing Mars Orbiter Camera Imagery

right image. The values above are tuned to the range of offsets that are found in this particular set of map
projected images.

Given that we map projected the images using the same settings, you may be wondering why there would
still be an offset. The reason is twofold: (1) the camera position may be slightly off, resulting in slight
mis-alignment between stereo images; or (2) ISIS doesn’t have a perfect surface to project onto during map
projection, so small terrain features still produce changes in perspective. (In fact, these are precisely the
features we are hoping to detect!)

Given the uncertainties due to (1) and (2) above, it can be tricky to select a good search
range for the stereo.default file. One way is to let stereo perform one round of auto
search range search. Look at the results using the disparitydebug program. The output
images will clearly show good data or bad data depending on whether the search range is
correct. If the edges of these images look degraded, then the search range may need to be
expanded by hand.

The worst case scenario is to determine search range by hand by opening both images
in qview and comparing the coordinates of points that you can match visually. Subtract
locations from the first image from the second image, will yield offsets that must be in
the search range. Build a bounding box around several of these sampled offsets and then
expand the box by 50%. This will produce good results in most images. Future versions of
the software will try to better assist the user in automatically determining the correlation
window.

3.3.2 Performing Stereo Correlation

Here is how the stereo program is invoked:

ISIS 3> stereo E0201461.map.cub M0100115.map.cub results/E0201461-M0100115

That last option (results/E0201461-M0100115) is a prefix that is used when generating names for stereo
output files. In this case the first part is results/, which causes the program to generate results in that di-
rectory with filename that start with E0201461-M0100115. If instead that last text was E0201461-M0100115
it would have created a collection of files that start with E0201461-M0100115 in the same directory as the
input files.

3.3.3 Diagnosing Problems

Once invoked, stereo proceeds through several stages that are detailed on page 80. Intermediate and final
output files are generated as it goes. See Appendix C, page 95 for a comprehensive listing. Many of these
files are useful for diagnosing and debugging problems. For example, as Figure 3.2 shows, a quick look at
some of the TIFF files in the results/ directory provides some insight into the process.

Perhaps the most important file for assessing the quality of your results is the good pixel image,
(E0201461-M0100115-GoodPixelMap.tif). If this file shows mostly good, gray pixels in the overlap area
(the area that is white in both the E0201461-M0100115-lMask.tif and E0201461-M0100115-rMask.tif
files), then your results are just fine. If the good pixel image shows missing data, signified by red pixels in
the overlap area, then you need to go back and tune your stereo.default file until your results improve.
This might be a good time to make a copy of stereo.default as you tune the parameters to improve the
results.

21

Chapter 3

Figure 3.2: These are the four
viewable .tif files created by the
stereo program. On the left are
the two aligned, pre-processed im-
ages: (E0201461-M0100115-L.tif
and E0201461-M0100115-R.tif).
The next two are mask images
(E0201461-M0100115-lMask.tif and
E0201461-M0100115-rMask.tif), which
indicate which pixels in the aligned images
are good to use in stereo correlation. The
image on the right is the “Good Pixel map”,
(E0201461-M0100115-GoodPixelMap.tif),
which indicates (in gray) which were suc-
cessfully matched with the correlator, and
(in red) those that were not matched.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable
versions of the intermediate results from the stereo correlation algorithm. disparitydebug converts infor-
mation in the disparity image files into two TIFF images that contain horizontal and vertical components
of the disparity (i.e. matching offsets for each pixel in the horizontal and vertical directions). There are
actually four flavors of disparity map: the -D.tif, the -RD.tif, the -F-corrected.tif, and -F.tif. You
can run disparitydebug on any of them. Each shows the disparity map at the different stages of processing.

ISIS 3> cd results
ISIS 3> disparitydebug E0201461-M0100115-F.tif

If the output H and V files from disparitydebug look okay, then the point cloud image are most likely ready
for post-processing. You can proceed to make a mesh or a DEM by processing E0201461-M0100115-PC.tif
using the point2mesh or point2dem tools, respectively.

22

Tutorial: Processing Mars Orbiter Camera Imagery

Figure 3.3: Disparity images pro-
duced using the disparitydebug tool.
The two images on the left are the
E0201461-M0100115-D-H.tif and
E0201461-M0100115-D-V.tif files,
which are the raw horizontal and ver-
tical disparity components produced
by the disparity map initialization
phase. The two images on the right
are E0201461-M0100115-F-H.tif and
E0201461-M0100115-F-V.tif, which
are the final filtered, sub-pixel-refined
disparity maps that a fed into the
Triangulation phase to build the point
cloud image. Since these MOC images
were acquired by rolling the spacecraft
across-track, most of the disparity that
represents topography is present in the
horizontal disparity map. The vertical
disparity map shows disparity due to
“wash-boarding,” which is not from to-
pography but from spacecraft movement.
Note however that the horizontal and
vertical disparity images are normalized
independently. Although both have the
same range of gray values from white
to black, they represent significantly
different absolute ranges of disparity.

23

Chapter 3

3.4 Visualizing the Results

When stereo finishes, it will have produced a point cloud image. At this point, many kinds of data products
can be built from the E0201461-M0100115-PC.tif point cloud file.

3.4.1 Building a 3D Model

If you wish to see the data in an interactive 3D browser, then you can generate a 3D object file using the
point2mesh command (page 82). The resulting file is stored in Open Scene Graph binary format [6]. It can
be viewed with osgviewer (the Open Scene Graph Viewer program, distributed with the binary version of
the Stereo Pipeline). The point2mesh program takes the point cloud file and the left normalized image as
inputs:

ISIS 3> point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif -l

When the osgviewer program starts, you may want to toggle the lighting with the ‘L’ key, toggle texturing
with the ’T’ key, and toggle wireframe mode with the ’W’. Press ’?’ to see a variety of other interactive
options.

Figure 3.4: The
E0201461-M0100115.ive
file displayed in the OSG
Viewer.

3.4.2 Building a Digital Elevation Model

The point2dem program (page 81) creates a DEM from the point cloud file.

ISIS 3> point2dem E0201461-M0100115-PC.tif

The resulting TIFF file is map projected and will contain georeferencing information stored as GeoTIFF
tags. You can specify a coordinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calcu-
lated for the Moon or Mars).

ISIS 3> point2dem -r mars E0201461-M0100115-PC.tif

This product is suitable for scientific use, and can be imported into a variety of GIS platforms. However,
the resulting file, E0201461-M0100115-DEM.tif, will have 32-bit floating point pixels, and will not render
well in typical image viewers.

The point2dem program can also be used to orthoproject raw satellite imagery onto the DEM. To do this,
invoke point2dem just as before, but add the --orthoimage option and specify the use of the left image
file as the texture file to use for the projection:

24

Tutorial: Processing Mars Orbiter Camera Imagery

Figure 3.5: The image on the
left is a normalized DEM (gen-
erated using the -n option),
which shows low terrain values
as black and high terrain val-
ues as white. The image on
the right is the left input image
projected onto the DEM (cre-
ated using the --orthoimage
option to point2dem).

ISIS 3> point2dem -r mars --orthoimage E0201461-M0100115-L.tif \
E0201461-M0100115-PC.tif

The point2dem program can be used in many different ways. Be sure to explore all of the options.

25

Chapter 3

3.4.3 Generating Color Hillshade Maps

Once you have generated a DEM file, you can use the Vision Workbench’s colormap and hillshade tools
to create colorized and/or shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM file to use. The colormap is
applied to the full range of the DEM, which is computed automatically. Alternatively you can specific your
own min and max range for the color map.

ISIS 3> colormap E0201461-M0100115-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM file to use. You can control the azimuth and elevation
of the light source using the -a and -e options.

ISIS 3> hillshade E0201461-M0100115-DEM.tif -o hrad-shaded.tif -e 25

To create a colorized version of the shaded relief file, specify the DEM and the shaded relief file that should
be used:

ISIS 3> colormap E0201461-M0100115-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

Figure 3.6: The colorized DEM, the shaded relief image, and the colorized hillshade.

26

Tutorial: Processing Mars Orbiter Camera Imagery

3.4.4 Building Overlays for Moon and Mars mode in Google Earth

The final program in the Stereo Pipeline package that this tutorial will address is image2qtree. This tool
was designed to create tiled, multi-resolution overlays for Google Earth. In addition to generating image
tiles, it produces a metadata tree in KML format that can be loaded from your local hard drive or streamed
from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image files with georeferencing information (e.g.
grayscale or RGB geotiff images). In this example, it can be used to process
E0201461-M0100115-DEM-normalized.tif, E0201461-M0100115-DRG.tif hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif

ISIS 3> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Figure 3.7: The colorized hillshade DEM as a KML overlay.

27

28

Part II

The Stereo Pipeline in Depth

29

Chapter 4

Correlation

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We
start with an overview of the five stages of stereo reconstruction. Then we move into an in-depth discussion
and exposition of the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to
identify unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the
stereo.default file. For scientists and engineers who are using DEMs produced with the Stereo Pipeline,
this chapter may help to answer the question, “What is the Stereo Pipeline doing to the raw data to produce
this DEM?”

A related question that is commonly asked is, “How accurate is a DEM produced by the Stereo Pipeline?”
This chapter does not yet address matters of accuracy and error, however we have several efforts underway
to quantify the accuracy of Stereo Pipeline-derived DEMs, and will be publishing more information about
that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a
multistage pipeline as depicted in Figure 4.1, and detailed in the following sections.

4.1 Pre-processing

The first optional (but recommended) step in the process is least squares Bundle Adjustment, which is
described in detail in Chapter 5.

Next, the left and right images are roughly aligned using one of two methods: (1) a linear transform of the
right image based on automated tie-point measurements, or (2) map projection of both the left and right
images using the ISIS cam2map command. The former option is done automatically by the stereo pipeline
when the DO_INTERESTPOINT_ALIGNMENT variable in the stereo.default file is turned on.

The latter option, running cam2map (or cam2map4stereo.py), must be carried out by the user prior to
invoking the stereo command. Map projecting the images using ISIS eliminates any unusual distortion in
the image due to the unusual camera acquisition modes (e.g. pitching “ROTO” maneuvers during image
acquisition for MOC, or highly elliptical orbits and changing line exposure times for the High Resolution
Stereo Camera, HRSC). It also eliminates some of the perspective differences in the image pair that are due
to large terrain features by taking the existing low-res terrain model into account (e.g. the Mars Orbiter
Laser Altimeter, MOLA, or Unified Lunar Coordinate Network, ULCN, 2005 models).

In essence, map projecting the images results in a pair of very closely matched images that are as close to
ideal as possible given existing information. This leaves only small perspective differences in the images,
which are exactly the features that the stereo correlation process is designed to detect.

31

Chapter 4

“Left” Image “Right” Image

Registration Adjusted Ephemeris
or Automated
Interest Points

Disparity Map Initialization

Outlier Rejection / Hole Filling
Final Disparity Map

<output>-F.exr

Triangulation

Mesh Generation

Pre-processing

Bundle
Adjustment

stereo

Sub-Pixel Refinement
Sub-pixel Disparity Map

<output>-R.exr

Approx. Disparity Map
<output>-D.exr

Point Cloud Image
<output>-PC.tif

DEM Generation
3D Mesh

<output>.ive

Digital Elevation Model
<output>-DEM.tif

point2dem point2mesh

isis_adjust

Figure 4.1: Flow of data through the Stereo Pipeline.

For this reason, we highly recommend map projection for pre-alignment of most stereo pairs. In either
case, the pre-alignment step is essential for performance because it ensures that the disparity search space
is bounded to a known area. In both cases, the effects of pre-alignment are taken into account later in
the process during Triangulation, so you do not need to worry that pre-alignment will compromise the
geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to
bring them into the same dynamic range. Various options in the stereo.default file effect whether or
how normalization is carried out, including DO_INDIVIDUAL_NORMALIZATION and FORCE_USE_ENTIRE_RANGE.
Although the defaults work in most cases, the use of these normalization steps can vary from data set to
data set, so we recommend you refer to the examples in Chapter 6 to see if these are necessary in your use
case.

Finally, pre-processing can perform some filtering of the input images (as determined by
PREPROCESSING_FILTER_MODE) to reduce noise and extract edges in the images. When active, these filters
apply a Gaussian blur with a sigma of SLOG_KERNEL_WIDTH that can improve results for noisy images1.
The pre-processing modes that extract image edges are useful for stereo pairs that do not have the same
lighting conditions, contrast, and absolute brightness [15]. We recommend that you use the defaults for
these parameters to start with, and then experiment only if your results are suboptimal.

1PREPROCESSING_FILTER_MODE must be chosen carefully in conjunction with COST_MODE. (See Appendix B)

32

Correlation

4.2 Disparity Map Initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute
correspondences between pixels in the left image and pixels in the right image. The map of these corre-
spondences is called a disparity map. You can think of a disparity map as an image whose pixel locations
correspond to the pixel (u, v) in the left image, and whose pixel values contain the horizontal and vertical
offsets (du, dv) to the matching pixel in the right image, which is (u+ du, v + dv).

The correlation process attempts to find a match for every pixel in the left image. For large images (e.g. from
HiRISE or Lunar Reconnaissance Orbiter Camera, LROC), this is very, very expensive computationally, so
the correlation process is split into two stages. The disparity map initialization step computes approximate
correspondences using a pyramid-based search that is highly optimized for speed, but trades this speed for
accuracy. The results of disparity map initialization are integer-valued disparity estimates. The sub-pixel
refinement step takes these integer estimates as initial conditions for an iterative optimization and refines
them using the algorithm discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box filter-like accumulator
that reduces duplicate operations during correlation [17]; (2) a coarse-to-fine pyramid based approach where
disparities are estimated using low resolution images, and then successively refined at higher resolutions;
and (3) partitioning of the disparity search space into rectangular sub-regions with similar values of disparity
determined in the previous lower resolution level of the pyramid [17].

Correlation itself is carried out by sliding a small, rectangular template window from the from left image
over the specified search region of the right image, as in Figure 4.2. The “best” match is determined by
applying a cost function that compares the two windows. The COST_MODE variable allows you to choose one
of three cost functions, though we recommend normalized cross correlation [12], since it is most robust to
slight lighting and contrast variation in between a pair of images.

4.2.1 Debugging Disparity Map Initialization

Not all pixels will be successfully matched during stereo matching. Matching may fail due to a variety of
reasons:

• In regions where the images do not overlap, there should be no valid matches in the disparity map.

• Match quality may be poor in regions of the images that have different lighting conditions, contrast,
or absolute brightness.

• Areas that have image content with very little texture or extremely low contrast may have an insuf-
ficient signal to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to different image perspective, such as crater and canyon walls,
may exhibit poor matching performance.

Bad matches, often called “blunders” or “artifacts” are also common, and can happen for many of the same
reasons listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders,
but the effectiveness of these outlier rejection strategies does vary depending on the quality of the input
imagery.

When tuning up your stereo.default file, you will find that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix -D.tif file into a pair of normal images that contain the horizontal and vertical components

33

Chapter 4

Figure 4.2: The correlation algorithm in disparity map initialization uses a sliding template window from
the left image to find the best match in the right image. The size of the template window can be adjusted
using the H_KERN and V_KERN parameters in the stereo.default file, and the search range can be adjusted
using the {H,V}_CORR_{MIN/MAX} parameters.

of disparity. You can open these in a standard image viewing application and see immediately which pixels
were matched successfully, and which were not. Stereo matching blunders are usually also obvious when
inspecting these images. With a good intuition for the effects of various stereo.default parameters and
a good intuition for reading the output of disparitydebug, it is possible to quickly identify and address
most problems.

4.3 Sub-pixel Refinement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated
disparity value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel refinement
stage based on the SUBPIXEL_MODE setting.

The first mode is parabola-fitting sub-pixel refinement (SUBPIXEL_MODE 1). This technique fits a 2D
parabola to points on the correlation cost surface in an 8-connected neighborhood around the cost value
that was the “best” as measured during disparity map initialization. The parabola’s minimum can then be
computed analytically and taken as as the new sub-pixel disparity value.

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as pixel-
locking: the sub-pixel disparities tend toward their integer estimates and can create noticeable “stair steps”
on surfaces that should be smooth [16, 18]. See e.g. Figure 4.3(b). Furthermore, the parabola subpixel

34

Correlation

(a) Left Image (b) Parabola Subpixel Mode (c) Bayes EM Subpixel Mode

(d) Right Image (e) Parabola Hillshade (f) Bayes EM Hillshade

Figure 4.3: Left: Input images. Center: results using the parabola draft subpixel mode (SUBPIXEL_MODE =
1). Right: results using the Bayes EM high quality subpixel mode (SUBPIXEL_MODE = 2).

mode is not capable of refining a disparity estimate by more than one pixel, so although it produces smooth
disparity maps, these results are not much more accurate than the results that come out of the disparity
map initialization in the first place. However, the speed of this method makes it very useful as a “draft”
mode for quickly generating a DEM for visualization (i.e. non-scientific) purposes.

For high quality results, we recommend SUBPIXEL_MODE 2: the Bayes EM weighted affine adaptive window
correlator. This advanced method produces extremely high quality stereo matches that exhibit a high
degree of immunity to image noise. For example Apollo Metric Camera images are affected by two types of
noise inherent to the scanning process: (1) the presence of film grain and (2) dust and lint particles present
on the film or scanner. The former gives rise to noise in the DEM values that wash out real features, and
the latter causes incorrect matches or hard to detect blemishes in the DEM. Attenuating the effect of these
scanning artifacts while simultaneously refining the integer disparity map to sub-pixel accuracy has become
a critical goal of our system, and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that
can be rotated, scaled, and translated as it zeros in on the correct match in the right image. This adaptive
window is essential for computing accurate matches on crater or canyon walls, and on other areas with
significant perspective distortion due to foreshortening.

This affine-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm
in the field of computer vision [3]. We have extended this technique; developing a Bayesian model that

35

Chapter 4

treats the Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework.
This statistical model also includes a Gaussian mixture component to model image noise that is the basis
for the robustness of our algorithm. We will not go into depth on our approach here, but we encourage
interested readers to read our papers on the topic [14, 5].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-
scale approach for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized with the
disparity determined in the previous lower resolution level of the pyramid, thereby allowing the subpixel
algorithm to shift the results of the disparity initialization stage by many pixels if a better match can
be found using the affine, noise-adapted window. Hence, this sub-pixel algorithm is able to significantly
improve upon the results to yield a high quality, high resolution result.

4.4 Triangulation

The Stereo Pipeline uses geometric camera models available in ISIS [2]. These highly accurate models are
customized for each instrument that ISIS supports. Each ISIS “cube” file contains all of the information
that is required by the Stereo Pipeline to find and use the appropriate camera model for that observation.

C

Y

X

Z

(x,y,z)

f

(pu,pv)

(u,v)

+u

+v

(0,0)

O

(a) Framing Camera Model

C

Z

X

Y

(x,y,z)

f

(pu,pv)

(u,v)
+u

+v
(0,0)

O

Perspective Axis

Instantaneous center

of projection

Orthographic Axis

Direction of camera motion

(b) Pushbroom Camera Model

Figure 4.4: Most remote sensing cameras fall into two generic categories based on their basic geometry.
Framing cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture
images one scan line at a time, building up an image over the course of several seconds as the satellite
moves through the sky.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length,
pixel size, and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters.
Taken together, these parameters are sufficient to “forward project” a 3D point in the world onto the image
plane of the sensor. It is also possible to “back project” from the camera’s center of projection through a
pixel corresponding to the original 3D point.

Notice, however, that forward and back projection are not symmetric operations. One camera is sufficient
to “image” a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a
single camera and a pixel location x = (u, v) that is the image of an unknown 3D point P = (x, y, z), it is
only possible to determine that P lies somewhere along a ray that emanates from the camera’s center of
projection through the pixel location x on the image plane (see Figure 4.4).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through
back projection, so we must bring more information to bear on the problem of uniquely reconstructing our
3D point. In order to determine P using back projection, we need two cameras that both contain pixel

36

Correlation

Figure 4.5: Once a disparity map has been generated and refined, it can be used in combination with the
geometric camera models to compute the locations of 3D points on the surface of Mars. This figure shows
the position (at the origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor
at two points in time where it captured images in a stereo pair.

locations x1 and x2 where P was imaged. Now, we have two rays that converge on a point in 3D space (see
Figure 4.5). The location where they meet must be the original location of P .

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing
information will effect the rays’ positions as well. Instead, we take the closest point of intersection of the
two rays as the location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric
that measures how self-consistent our two camera models are for this point. You will learn in the next
chapter that this information, when computed and averaged over all reconstructed 3D points, can be a
valuable statistic for determining whether to carry out bundle adjustment.

37

38

Chapter 5

Bundle Adjustment

Satellite position and orientation errors have a direct effect on the accuracy of digital elevation models
produced by the Stereo Pipeline. If they’re not corrected, these uncertainties will result in systematic
errors in the overall position and slope of the DEM. Severe distortions can occur as well, resulting in
twisted or “taco shaped” DEMs, though in most cases these effects are quite subtle and hard to detect.

The Stereo Pipeline includes a powerful suite of tools for correcting camera position and orientation errors
using a process called bundle adjustment. Bundle adjustment is the process of simultaneously adjusting
the properties of many cameras and the 3D locations of the objects they see in order to minimize the error
between the estimated, back-projected pixel location of the 3D objects and their actual measured location
in the captured images.

That complex process can be boiled down to this simple idea: bundle adjustment ensures that observations
in multiple different images of a single ground feature are self-consistent. If they are not consistent, then
the position and orientation of the cameras as well as the 3D position of the feature must be adjusted until
they are. This optimization is carried out along with thousands (or more) of similar constraints involving
many different features observed in other images. Bundle adjustment is very powerful and versatile: it can
operate on just two overlapping images, or on thousands.

Bundle adjustment can also take advantage of ground control points (GCPs), which are 3D locations of
features that are known a priori (often by measuring them by hand in another existing DEM). GCPs can
improve the internal consistency of your DEM or align your DEM to an existing data product. Finally,

Figure 5.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from
Apollo 15 Orbit 33 imagery. (a) Prior to bundle adjustment, large discontinuities can exist between overlap-
ping DEMs made from different images. (b) After bundle adjustment, DEM alignment errors are minimized,
and no longer visible.

39

Chapter 5

even though bundle adjustment calculates the locations of the 3D objects it views, only the final properties
of the cameras are recorded for use by the Ames Stereo Pipeline. Those properties can be loaded into the
stereo program which uses its own method for triangulating 3D feature locations.

When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images
and the creation of DEMs. The bundle adjustment process described below should be completed prior to
running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users
who plan to create DEMs for scientific analysis and publication. Incorporating bundle adjustment into the
stereo work flow not only results in DEMs that are more internally consistent, it is also the correct way to
co-register your DEMs with other existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from
sources such as laser altimeters. Hand picked GCPs are the only way for ASPs to register to those types of
sources.

5.0.1 A deeper understanding

In bundle adjustment the position and orientation of each camera station are determined jointly with the
3D position of a set of image tie-points points chosen in the overlapping regions between images. Tie points,
like they sound, tie individual camera images together. Their physical manifestation would be a rock or
small crater than can be observed across multiple images.

Tie-points can be automatically extracted using Vision Workbench’s Interest Point module or through a
number of outside methods such as the famous SURF[4]. Creating a tie point is a three step process.
First, all images are processed for their natural ’interesting’ points. In most algorithms, an interest point
is defined as a place where image gradients accumulate together into a peak. These interesting points are
then described by the texture that surrounds them. Finally the described interesting points are matched
across the multiple images. A single matched pair of interest points is now a tie point to use in bundle
adjustment. In application, there is also a little filtering of the tie points with RANSAC [7].

Our bundle adjustment approach follows the method described in [19] and determines the best camera
parameters that minimize the projection error given by � =

�
k

�
j(Ik − I(Cj , Xk))2 where Ik are the tie

points on the image plane, Cj are the camera parameters, and Xk are the 3D positions associated with
features Ik. I(Cj , Xk) is an image formation model (i.e. forward projection) for a given camera and 3D
point. To recap, it projects the 3D point, Xk, into the camera with parameters Cj . This produces a
predicted image location for the 3D point that is compared against the observed location, Ik. We reduce
this error with the Levenberg-Marquardt algorithm (LMA). Speed is improved by using sparse methods as
described in Hartley and Zisserman [9].

Even though the arithmetic for bundle adjustment sounds clever. There are faults with the base implemen-
tation. Imagine a case where all cameras and 3D points were collapsed into a single point. If you evaluate
the above cost function, you’ll find that the error is indeed zero. Sadly, this is not the correct solution if the
images were taken from orbit. Another example is if a translation was applied equally to all 3D points and
camera locations. This again would not effect the cost function. This fault comes from bundle adjustment’s
inability to control scale and translation of the solution. It will correct geometric shape of the problem.
Yet it can not guarantee that solution will have correct scale and translation.

We attempt to fix this problem by adding two additional cost functions to bundle adjustment. First of
which is � =

�
j(C

initial
j − Cj)2. This constrains camera parameters to stay relatively close to their initial

values. Second, a small handful of 3D ground control points can be chosen by hand and added to the error
metric as � =

�
k(X

gcp
k − Xk)2 to constrain these points to known locations in the planetary coordinate

frame. A physical example of a ground control point could be the location of a lander that has a well

40

Bundle Adjustment

known location. In the cost functions discussed above, errors are weighted by the inverse covariance of the
measurement that gave rise to the constraint.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment
to terminate. When updates to parameters become insignificantly small or when the error, �, becomes
insignificantly small, then the algorithm has converged and the result is most likely as good as it will get.
However, the algorithm will also terminate when the number of iterations becomes too large, in which case
bundle adjustment may or may not have finished refining the parameters of the cameras.

5.1 Performing bundle adjustment with isis_adjust

First off, let it be known that USGS’s ISIS has its own bundle adjustment software called jigsaw. It has a
long history and is supported by a team of skilled developers. Despite this, Ames Stereo Pipeline provides
an alternative called isis_adjust that has its own benefits.

Like jigsaw, the isis_adjust program is designed to perform bundle adjustment on images supported
by ISIS 3 software package. The isis_adjust program does not discriminate based on camera type. It
can perform bundle adjustment on images from line-scan imagers like MOC, Lunar Reconnaissance Orbiter
Camera (LROC) NAC, HiRISE, and the Context Camera (CTX). The isis_adjust program can also
perform bundle adjustment on traditional frame cameras (e.g. Apollo Metric Camera). Theoretically it
should also work with push-frame imagers like the Thermal Emission Imaging System (THEMIS) VIS, and
LROC WAC, though this is untested.

jicfvΔ
jicfuΔ

Kc j

K f i

�u f ic j

v f
i
c

j
�

� �u f ic j

�v f i c j
�

World frame

Camera frame

Image plane

Figure 5.2: A feature observation in bundle adjustment, from Moore et al. [13]

41

Chapter 5

The isis_adjust program works by first converting all pixel measurements in an image to measurements
defined on the ideal focal plane using millimeters and the ephemeris time (ET). The ET is the absolute
second at which that pixel measurement was recorded on the camera. For a frame camera, all of the
pixels are captured at the same time so the ET will be identical for all measurements on the image. For
pushbroom, pushframe, or other cameras which build up their ‘image’ over time, different parts of the
image will have different ET values. For example, on a MOC image between the first and last line about 5
seconds of ET will have elapsed.

When isis_adjust calculates the partial derivatives of the forward projection of a point, it uses an ideal
pinhole camera model. The properties of this model are defined as properties of the subject camera at the
specified ET for the current measure plus the correction function, f(t), that isis_adjust is solving for.
Many forms of f(t) could be used; the only limit is the number of parameters in the equations. Some initial
work hints that anything greater than a second order polynomial becomes an ill-posed problem, but we
hope to investigate this further in the future.

Our isis_adjust implements multiple bundle adjustment algorithms which can be selected from the com-
mand line. It implements the standard sparse algorithm that can be found in literature. It also implements
our research work into robust cost functions. This allows the algorithm to ignore measurements that it
thinks to be outliers.

Finally, isis_adjust stores its solution for a camera as a delta that can be added to the camera’s original
SPICE in a separate file. Those files have the extension *.isis_adjust. This is less than ideal and one
feature that we value in ISIS’s jigsaw. Their software overwrites the SPICE information in the cube file.
This means that jigsaw results can be used in other ISIS programs like cam2map. This is not the case with
isis_adjust’s results.

5.1.1 Options

The following is a listing and explanation of the options that can be given to isis_adjust on the command
line. These options are not required.

--cnet|-c control-network-file
Optional. This option will force isis_adjust to use a pre-built built control network. This control
network can either be in the USGS ISIS “cnet” format or in the binary Vision Workbench format.
If no control network is supplied using this option, isis_adjust will look for match files in the current
working directory with base filenames that match the input images. The isis_adjust program will
then create its own control network file and save it as isis_adjust.cnet.

--cost-function L1|L2|Cauchy|Huber|PseudoHuber(=L2)
Sets the cost function used for bundle adjustment. Default is L2 which is the normal squared error.
The full list of available options are:

L1 Proportional Error
L2 Squared Error and Default Option.
Cauchy
Huber
PseudoHuber

The options towards the end of the list are robust cost functions that deal better with non-ideal data
that has outliers. These robust cost functions are performed by post-weighting the original errors yet
still using equations derived for squared error.

42

Bundle Adjustment

--bundle-adjuster Ref|Sparse|RobustRef|RobustSparse|RobustSparseKGCP(=Sparse)
Sets the bundle adjustment code to be used. The standard to use is Sparse, which is a traditional
squared error derived method that utilizes sparse matrices to obtain speed. Here are the complete
list of options:

Ref Reference implementation that doesn’t use sparse methods.
Sparse Default implementation.
RobustRef
RobustSparse
RobustSparseKGCP

The ending methods are experimental student-t derived bundle adjustment algorithms. Using the
experimental robust algorithm overrides the cost-function option. The last two bundle adjustment
algorithms are still experimental and are a work in progress.

--disable-camera-const
Optional. This disables the camera constraint error. Useful for debugging and just exploring what
are the effects of this cost function.

--disable-gcp-const
Optional. This disables the GCP constraint error even if GCPs are provided. Useful for debugging
and just exploring what the effects are of GCPs.

--gcp-scalar multiplier(=1)
Optional. Sets the multiplier that is used to adjust the sigma (or uncertainty) of the ground control
points. The sigmas of ground control points are defined in the GCP data file, so this option is useful
when debugging for universally scaling GCP sigmas up or down.

--lambda|-l float
Optional. This sets the starting value for λ: the parameter in the Levenberg Marquardt (LMA)
optimization algorithm that selects between Gauss-Newton optimization and gradient descent. This
parameter evolves over time on its own, but this argument can be used to override its initial value.
This is an advanced setting, not recommended for normal use.

--min-matches integer(=5)
Set the minimum number of tie-points that are required between a pair of images for them to be
included in the control network. This option is useful for eliminating tie-points from image pairs that
have only a handful of poor or erroneous matches.

--max-iterations integer(=25)
Sets the maximum number of iterations for bundle adjustment. The number of required iterations
will vary by problem size, so this parameter allows the user to decide how much time they’re willing
to dedicate to the correction of the data. We have found that 20 iterations suffices for small problems
with 10 or fewer images, and tens or hundreds of iterations may be required for problems with hundreds
or thousands of images.

--poly-order integer(=0)
Optional. Sets the order of the polynomial that is used for adjustment. Using zero means only apply
offset to the camera parameters that are not time dependent. That setting is recommend for frame
cameras. Linescan imagers should using either a first order polynomial or a second order. Increasing
this number too high can lead to a problem that is ill-defined and would prevent the algorithm from
converging on a solution. Initial work suggest that anything beyond a 2nd order polynomial would be
ill-defined. 3rd order may work with a good dose of ground control points.

43

Chapter 5

--position-sigma float(=100)
Sets the sigma (or uncertainty) of the spacecraft position in units of meters.

--pose-sigma float(=0.1)
Sets the sigma (or uncertainty) of the spacecraft pose in units of radians.

--report-level|-r integer(=10)
Optional. Sets the report level for the final bundle adjustment report. This report is saved as
isis_adjust.report. Report levels available are:

0 - CommandLine Error and Final report

10 - CommandLine Iteration Error (default)

20 - Write Report file

25 - In development
30 - Write Stereo Triangulation Error

35 - In development
100 - Debug, Write Error Vectors (big human readable)

110 - Debug, Write Jacobian Matrix (massive human readable)

--robust-threshold float(=10)
Sets the robust threshold; an additional parameter specifically for the PseudoHuber, Huber, and
Cauchy arguments to the --cost-function option.

--save-iteration-data|-s
Optional. Use to write bundlevis visualization files.

--seed-with-previous
Optional. Loads up the previous isis_adjust session’s adjustment file and uses them as a starting
point for this session.

--write-isis-cnet-also
Optional. Write an ISIS Parameter Value Language (PVL) style control network file to isis_adjust.net.
The output file is very large compared to the binary output, isis_adjust.cnet, but is human read-
able and compatible with the ISIS 3 qnet tool.

--write-kml [0|1(=0)]
Optional. Providing this option with a zero will have the program write a Keyhole Markup Language
(KML) file showing the location of all the GCPs and be colored according to their final error. Providing
this option with a one will have this perform as before, but also have it write all of the 3D point
estimates. This is useful for debugging and for having a quick visualization of where stress points
might exist in a bundle adjustment problem when there are many cameras.

--help|-h
Provides a shortened list of the above.

5.2 Visualizing bundle adjustment with bundlevis

The bundlevis program is used to visualize the process of bundle adjustment. It will show an animated,
fully interactive 3D scene containing all the 3D points and cameras across all iterations of bundle adjustment.

44

Bundle Adjustment

This tool is used to quickly determine if bundle adjustment was successful. If something does go wrong,
bundlevis can be a powerful debugging tool for identifying the problem.

Once bundlevis has loaded the data from a bundle adjustment run, the user can click on and inspect the
position of 3D points that are in purple and play back the iterations using the keyboard. Double clicking
on a camera will cause lines to be drawn to each point viewed by the camera. Clicking on a 3D point causes
lines to be drawn to all cameras that view the point.

Bundle adjustment can fail in a variety of different ways, but users should be aware of two common failure
modes. The first is segmentation; where tie points will split into two or more distinct groups, producing
cliffs between or clumps among points. This is usually caused by insufficient matches between a pair of
images in your control network. You may need to choose some tie-points between these images by hand or
add additional images that overlap with the problem area.

The second common sign of a failure is a point cloud explosion (the resulting terrain looks unrecognizably
noisy). This most often results from a high number of outlying, bad tie-point measurements that the bundle
adjustment algorithm can’t recover from. These bad constraints can be removed by hand or mitigated using
one of the robust cost modes (e.g. by using the --cost-function argument for isis_adjust).

5.2.1 Options

The following is a listing and explanation of the options that can be given to bundlevis from the command
line.

--camera-iteration-file|-c bundlevis-camera-iteration-file

Figure 5.3: A screenshot of bundlevis visualizing the bundle adjustment of imagery from the Apollo 15
Metric Camera (orbit 33).

45

Chapter 5

Optional. Supply a camera iteration file that was produced by isis_adjust. bundlevis will only
draw cameras if you supply a camera iteration file.

--points-iteration-file|-p bundlevis-point-iteration-file
Optional. Supply a point iteration file that was produced by isis_adjust. bundlevis will only draw
3D points if you supply a point iteration file.

--control-network-file|-n Vision-Workbench-binary-control-network-file
Optional. Supply a control network file that was produced by isis_adjust. This allows bundlevis to
show the relationship between points and cameras when used in conjunction with --camera-iteration-file
and --points-iteration-file.

--additional-pnt-files bundlevis-point-iteration-files
Optional. Supply additional points to be animated alongside the camera and 3D points. The files
given must be in the same format as a bundlevis point iteration file and have the same number of
iterations.

--fullscreen
Optional. Displays bundlevis using the entire screen; otherwise the program loads in a window. The
fullscreen option does not work correctly with dual screen systems.

--stereo
Optional. Render the 3D scene in red/blue anaglyph mode.

--show-moon
Optional. Draws a wireframe sphere with a radius of 1737.3 km that represents the Moon.

--show-mars
Optional. Draws a wireframe sphere with a radius of 3397 km that represents Mars.

--show-earth
Optional. Draws a wireframe sphere that represents the Earth.

5.2.2 Controls

Once bundlevis is running, there are several controls that can be used to interface with the program.
There are the playback controls, jump-to-frame controls, and the mouse.

Playback Controls Playback controls are similar to those in the popular Winamp program; arranged
on the keyboard like the controls on a tape deck.

Z Step back one iteration
X Play
C Pause
V Stop (which is the same as Pause except that bundlevis goes back to iteration 0)
B Step forward one iteration

Jump-to-Frame Controls Jump-to-Frame controls are the numbers 1-9 along the top of the keyboard.
Pressing 1 will display the very first iteration. Pressing 9 will display the very last iteration. Pressing 2
through 8 will display iterations that are somewhere in between based on the value of the number. Finally,
pressing 0 will cause bundlevis to display the points at their very last iteration with an additional tail
pointing back to the starting position of the points in the first iteration.

46

Bundle Adjustment

Mouse The mouse is used to move around the model, and has the same controls found in many 3D
environments (e.g. osgviewer). Moving the mouse with the left mouse button held down will cause the
model to rotate. Moving with the right mouse button pressed will zoom, and moving with the middle
mouse button will translate. Alternatively for systems where the mouse is button-challenged, option +
mouse is translation and command + mouse is zoom.

Double clicking with the mouse on a point or camera will allow the user to query entities in the model. A
double click will cause the point number and camera number to be printed to the terminal. The number
identifier for a given camera or point will also appear when the viewer is zoomed in on that entity.

5.3 Examples of Use

5.3.1 Processing Mars Orbital Camera

What follows is an example of bundle adjustment using two MOC images of the south Cydonia region. We
use images M10/00254 and R09/01059. These images are available from NASA’s PDS (the ISIS mocproc
program will operate on either the IMQ or IMG format files, we use the .imq below in the example). For
reference, the following ISIS commands are how to convert the MOC images to ISIS cubes.

ISIS 3> mocproc from= m1000254.imq to= m1000254.cub mapping=no
ISIS 3> mocproc from= r0901059.imq to= r0901059.cub mapping=no

You will note that the resulting images are not map projected. Bundle adjustment requires the ability to
project arbitrary 3D points into the camera frame. The process of map projecting an image dissociates the
camera model from the image. Map projecting can be perceived as the generation of a new infinitely large
camera sensor that is perfectly parallel to the surface of its subject (and thus spherical). That makes it
extremely hard to project a random point into the camera’s original model. The math would follow the
transformation from projection into the camera frame, then projected back down to surface that ISIS uses,
then finally up into the infinitely large sensor. The isis_adjust program does not support this.

At this point, we need to automatically generate tie-points between these two images. This can be done
using the ipfind and ipmatch utilities. These tools do not reliably (currently) work with photometrically
calibrated images, so we must first convert these images to a standard format using the ISIS program
isis2std or gdal_translate. The utility gdal_translate is the preferred option as it is able to produce
lossless compressed images.

ISIS 3> isis2std from= m1000254.cub to= m1000254.tif format=TIFF
ISIS 3> isis2std from= r0901059.cub to= r0901059.tif format=TIFF

or ...

ISIS 3> gdal_translate -of GTiff -scale -ot Byte
-co COMPRESS=LZW -co TILED=yes m1000254.cub m1000254.tif

ISIS 3> gdal_translate -of GTiff -scale -ot Byte
-co COMPRESS=LZW -co TILED=yes r0901059.cub r0901059.tif

Here is how to process those newly created TIFF files for tie-points using the Interest Point Module tools
from Vision Workbench.

47

Chapter 5

> ipfind m1000254.tif r0901059.tif -g 1.2
> ipmatch m1000254.tif r0901059.tif -d -r homography -i 30

Be aware that the tie-point tools available in Vision Workbench do not always
produce enough matches for bundle adjustment. An alternative would be to use
outside code such as SURF. We have included a patch at the end of the book that
converts SURF output to a Vision Workbench style match file. In extreme cases,
users can be forced to make measurements themselves. This can be performed with
ISIS’s qnet progam.

For this example we found that ipfind and ipmatch work great. Expect to
find approximately 100 matched points. Your results will be slightly different due
to the random nature of RANSAC.

Finally it is time to start bundle adjustment. There are many options that can be used at this stage. We
have chosen those required to create visualization data for bundlevis. We have also set the maximum
iterations to 100 and chose the option to create a detailed report file of isis_adjust’s results.

ISIS 3> isis_adjust *.cub -s --max 30 -r 50

Before you hit enter, notice that we are not feeding the interest point match files to isis_adjust. Instead,
we only provide the camera files. During run time, the program will see that it doesn’t have any image
measurements in the form of a control network. In that case it will attempt to build its own by searching
the current working directory for *.match files.

Now you have permission to run isis_adjust. You’ll see the command will produce considerable debugging
output and will place many output files in the current working directory. If you look through the output
in the terminal or alternatively in the output report file, isis_adjust.report, you’ll see that the problem
did not converge but reduced most of the error in the first 40 iterations (again, your results may vary
slightly). The lack of convergence is worrisome and a few (like 3) ground control points would probably
help considerably. Notice that the error improved only slightly after those first 40 iterations, but the shape
of the pointcloud and the camera paths changed considerably. This untwisting of the cameras can be seen
next in bundlevis.

Visualizing all of the data that was exported for bundlevis can be carried out as follows:

> bundlevis -p iterPointsParam.txt -c iterCameraParam.txt \
-n isis_adjust.cnet

Press escape to exit out of bundlevis when finished. You may also want to try viewing the data with a
wire-frame of Mars to give some perspective. Note, you will have to zoom in very far since the size of a
MOC frame is quite small relative to the size of Mars!

> bundlevis -p iterPointsParam.txt -c iterCameraParam.txt \
-n isis_adjust.cnet --show-mars

Producing a DEM using the newly created corrections is the same as covered in the Tutorial on page 17, with
one small difference: stereo needs to know of the existence of the correction files, m1000254.isis_adjust
and r0901059.isis_adjust.

48

Bundle Adjustment

ISIS 3> stereo m1000254.cub r0901059.cub m1000254.isis_adjust \
r0901059.isis_adjust MOC_RESULTS/M1000254_R0901059

The two new arguments (*.isis_adjust) provide stereo with the necessary corrections. When providing
outside camera models for images, they are always the 3rd and 4th argument for stereo. This is also how
stereo can be made to operate on images from standard consumer cameras.

5.3.2 Processing with Ground Control Points

Ground control point files describe a single point in the world that is seen by 1 or more cameras. How they
are measured in the first place is up to the user. We use a manual process of comparing each image to
a respected map projected image and then recording the latitude, longitude, and altitude of the point(s).
The maps to register against can be anything, but it is recommended to register against a product with a
high amount of cartographic stability and accuracy. For terrestrial work, we would use a USGS product
that can provide imagery that is registered to LIDAR height measurements.

Unlike match files, ground control points must specifically be given to isis_adjust from the command
line, but in no particular order. Ground control point files are written with the extension .gcp. Below is an
example of a ground control point file that was created to control a series of Apollo Metric Camera images
from several Apollo 15 orbits.

-52.8452 27.2561 1735999 300 300 500
sub4-AS15-M-2086.cub 210.9 3565.0
sub4-AS15-M-2087.cub 1476.9 3579.0
sub4-AS15-M-2088.cub 2798.9 3586.8
sub4-AS15-M-2089.cub 4133.5 3588.6
sub4-AS15-M-2344.cub 906.9 3874.8
sub4-AS15-M-2345.cub 2204.2 3913.9
sub4-AS15-M-2482.cub 939.8 4348.0
sub4-AS15-M-2483.cub 2282.0 4340.7
sub4-AS15-M-2484.cub 3642.1 4330.9

The first line of a .gcp file is like a header line and is different from the remaining lines. The first line
defines the world location of the ground control point, and the rest of the lines define the image locations
of the ground control points. Here are what the columns mean for the first line.

Column 1: Longitude in degrees
Column 2: Latitude in degrees
Column 3: Radius in meters
Column 4: Sigma (or uncertainty) in meters for Local X axis
Column 5: Sigma (or uncertainty) in meters for Local Y axis
Column 6: Sigma (or uncertainty) in meters for Local Z axis

The other lines describe where this GCP is found in each image:

Column 1: Image name
Column 2: Sample (X) image measurement

49

Chapter 5

Column 3: Line (Y) image measurement

Make a .gcp file for every ground control point, then be sure to feed them as an input to isis_adjust.
Remember that you can scale the sigma of all ground control points by using the --gcp-scalar flag. This
can save time by allowing you to make adjustments without needing to edit all of the files individually.

5.3.3 Sharing Data with ISIS 3’s qnet program

ISIS contains a program called qnet whose purpose is to create and edit ISIS style control network files. To
share a control network with qnet, you will need to save our control network in the ISIS format. If bundle
adjustment has already been performed once and if we want to simply convert the control network for use
in qnet, you can use this command to save an ISIS style control network:

ISIS 3> isis_adjust -c isis_adjust.cnet --write-isis-cnet-also *.cub

Otherwise if this is the first time performing bundle adjustment and a control network does not already
exist, use:

ISIS 3> isis_adjust --write-isis-cnet-also *.cub

There should now be an isis_adjust.net file in the project’s directory. It will be quite a bit larger than
the other control network file since it is stored as ASCII text, but it can be read and edited with a text
editor. Before starting qnet, there is one additional preparation that must be performed. ISIS’s qnet
requires a text file listing of all the cubes used by the control network. Here’s how to create one:

> ls *.cub > list_of_cubes.lis

Now, start up qnet without any command line arguments. Click File→Open. It will first ask for the list
of cubes. Refer it to the newly created list_of_cubes.lis. Next it will ask for the control network. Give
it isis_adjust.net.

At this time qnet does not work with the Apollo Metric Camera’s cube files. When
loading the text file listing of cubes it will issue an error about invalid serial numbers
for the listed cube files.

When finished, save the new control network file. Here’s how to use the new control network in isis_adjust:

ISIS 3> isis_adjust -c the_new_control_network.net *.cub

Take note that to distinguish ISIS style control network files from Stereo Pipeline style control network
files is by the file extension. ISIS control networks have the extension of .net and can be read with a text
editor. Stereo Pipeline’s control networks have the extension .cnet and are binary format files.

50

Chapter 6

Data Processing Examples

This chapter showcases a variety of results that are possible when processing different data sets with the
Stereo Pipeline. It is also a shortened guide that shows the commands and stereo.default files used to
process data. We hope that these are useful templates that will get you started in processing your own
data.

6.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions,
and significant surface coverage overlap are best suited for creating terrain models. Depending on the
characteristics of the mission data set and the individual images, the degree of acceptable variation will
differ. Significant differences between image characteristics increases the likelihood of stereo matching error
and artifacts, and these errors will propagate through to the resulting data products.

Although images do not need to be map projected before running the stereo program, we recommend
that you do run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large
topographic variation (and therefore large disparity differences across the scene, e.g. Valles Marineris).
Map projection is especially necessary when processing HiRISE images. This removes the large disparity
differences between HiRISE images and leaves only the small detail for the Stereo Pipeline to compute.
Remember that ISIS can work backwards through a map-projection when applying the camera model, so
the geometric integrity of your images will not be sacrificed if you map project first.

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever
fashion suits your purposes. If there are photometric problems with the images, those photometric defects
can be misinterpreted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had
SPICE data associated by running ISIS’s spiceinit program run on them first.

6.1.1 Combatting long run times

The factor that predominantly determines running time in the Stereo Pipeline is the size of the search space
considered by the correlation algorithm. These are set in the stereo.default file using the H_CORR_MIN,
H_CORR_MAX, V_CORR_MIN, and V_CORR_MAX parameters. If you comment these parameters
out (either by putting a ‘#’ at the beginning of their line or deleting them from your stereo.default file),
the Stereo Pipeline will try to automatically determine the search range for you, but this does not always
work perfectly. A spurious bad match can lead the pipeline to select a search range that is far too large, and

51

Chapter 6

performance will suffer as a result. If you know (or can estimate) the range of horizontal and vertical offsets
you expect to see between the two images, then you may want to try setting the search range yourself in
your stereo.default using the aforementioned parameters.

More generally, here are three strategies that tend to keep the search range small and run-times low:

1. You can crop your stereo pair (using the ISIS crop command) to a small region of interest within a
large stereo pair. ISIS and the Stereo Pipeline will keep track of these crop parameters automatically
and take them into account when applying the camera model during triangulation. You may want to
work with a cropped pair when you first start working with a new data set. Run times will be much
lower (minutes instead of days), and you can quickly tune things up before scaling things up.

2. The ISIS reduce command can be used to subsample the image pair. In this case, you are trading
resolution for speed, so this probably only makes sense for debugging or “previewing” 3D terrain.
That said, subsampling will tend to increase the signal to noise ratio, so it may also be helpful for
pulling 3D terrain out of noisy, low quality images.

3. You can map project the images (using the ISIS cam2map command or the cam2map4stereo.py pro-
gram provided with the Stereo Pipeline). If you project both images into the same map projection
and same pixel scale, then they will be aligned modulo uncertainty in spacecraft telemetry (typically
10-100’s of meters of error when the image is projected onto the ground). By default cam2map will
also project the image onto the local elevation model (MOLA or LOLA), which removes the stereo
disparity in the images that is due to coarse topography. The resulting image pair has only small
position offsets and fine 3D detail left to discover, so the search range can be kept very small and
run times can be improved. Again, ISIS and the Stereo Pipeline will keep track of how these map
projections affect the camera model, and take them into account when building up the 3D mesh via
triangulation. If you use cam2map, be sure that DO_INTERESTPOINT_ALIGNMENT = 0 in your
stereo.default. Note also that the --lat and --lon arguments to cam2map4stereo.py can be used
to crop your stereo images, and the --resolution argument can be used to subsample them.

If you are working with very large images, we highly recommend cropping or subsampling and working
with smaller sized images while you fine-tune the parameters in the stereo.default file, and once you get
satisfactory results to apply those parameters to the full images.

6.1.2 Comparing Examples to your System

Since our first release we reperformed some of these examples and recorded their processing time so you
the user can judge how long it will take you. Our examples were processed on our server called ‘Lunokhod
2’. This server is a Dell PowerEdge Rack 900 purchased in late 2009. Below are its specifications:

CPU Dual E7420 Xeon at 2.13 GHz (16 logical cores)
FSB 1066 MHz
L2 Cache 8 MB
Memory 64 GB @ 667 MHz (mis-matched?)
Storage Local RAID5
OS Red Hat Enterprise Linux 5.5
BogoMIPS 4256
Color Dell Graphite

The times recorded are listed in wall hours and CPU hours. Wall-hours are how long it took the job to
complete from the user’s perspective. CPU-hours are how much processing time it took to complete. If

52

Data Processing Examples

the job took 30 wall-minutes on a 2 core system, it spent 30 minutes in CPU 1 and CPU 2. Thus, the
total CPU-hours would be 1. This example, though correct, is not what always happens in the real world.
Inefficiency with managing multiple threads or the complete lack of multithreaded code will bring wall
hours up to CPU hours. Your required CPU hours will vary based on CPU architecture. Estimating your
required CPU hours for your system can be done by scaling with the BogoMIPS measurements. This can
be read from Linux systems with the command: cat /proc/cpuinfo

6.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures
can be several gigabytes each. Working with this data requires patience as it will take time.

One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged
side by side with some vertical offsets. These offsets mean that the CCDs will view some of the same terrain
but at a slightly different time and a slightly different angle. Mosaicking the CCDs together to a single
image is not a simple process and involves living with some imperfections.

One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability.
Instead, the HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script
in use by the HiRISE team that works forward from the team-produced ‘balance’ cubes, which provides
a de-jittered, noproj’ed mosaic of a single observation, which is perfectly suitable for use by the Stereo
Pipeline (this script was originally engineered to provide input for SOCET SET). However, the ‘balance’
cubes are not available to the general public, and so we include a program (hiedr2mosaic.py, written in
Python) that will take PDS available HiRISE EDR products and walk through the processing steps required
to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective
of the RED5 CCD. From there, hijitreg is performed to work out the relative offsets between CCDs.
Finally the CCDs are mosaicked together using the average offset listed from hijitreg using the handmos
command. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis
hical # Calibrate
histitch # Assemble whole-CCD images from the channels
spiceinit
spicefit # For good measure
noproj # Project all images into perspective of RED5
hijitreg # Work out alignment between CCDs
handmos # Mosaic to single file

To use our script, first go to the directory where you have downloaded the HiRISE’s RED EDR IMG files.
You can run the hiedr2mosaic.py program without any arguments to view a short help statement, with
the -h option to view a longer help statement, or just run the program on the EDR files like so:

hiedr2mosaic.py *.IMG

If you have more than one observation’s worth of EDRs in that directory, then limit the program to just
one observation’s EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems,
try using the -k option to retain all of the intermediary image files to help track down the issue. The
hiedr2mosaic.py program will create a single mosaic file with the extension .mos_hijitreged.norm.cub.

53

http://www.python.org

Chapter 6

Be warned that the operations carried out by hiedr2mosaic.py can take many hours to complete on the
very large HiRISE images.

Finally we recommend map projecting the product and normalizing both images in the stereo pair using
the same dynamic range. Notice that we map project the second image using the same map settings and
crop of the first image. This means the images will share the same origin and the stereo.default search
range can be centered around zero.

ISIS 3> cam2map4stereo.py first.mos_hijitreged.norm.cub second.mos_hijitreged.norm.cub
ISIS 3> bandnorm f=first.map.cub t=first.norm.cub
ISIS 3> bandnorm f=second.map.cub t=second.norm.cub
ISIS 3> ls first.norm.cub second.norm.cub > fromlist
ISIS 3> ls first.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> mkdir result
ISIS 3> stereo first.norm.equ.cub second.norm.equ.cub result/output

In the future, the HiRISE team will be producing de-jittered, noproj’ed imagery in the extras/ directory
of their PDS volume. When this happens, most of the above commands will no longer be required, as you
will be able to just run cam2map4stereo.py on their provided imagery.

6.2.1 Columbia Hills

Prepping Files: Wall Time +36:00:00.0 CPU Time +36:00:00.0
Processing in Stereo: Wall Time 297:28:06.0 CPU Time 881:39:45.54

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the floor of Gusev Crater and
cover the area where the MER Spirit landed and has roved, including the Columbia Hills.

(a) 3D Rendering (b) KML Screenshot

Figure 6.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the
Columbia Hills.

54

http://hirise.lpl.arizona.edu/PSP_001513_1655
http://hirise.lpl.arizona.edu/PSP_001777_1650

Data Processing Examples

Commands

Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001513_1655_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_001777_1650_RED*.IMG
ISIS 3> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub
ISIS 3> bandnorm from=PSP_001513_1655_RED.map.cub \

to=PSP_001513_1655_RED.map.norm.cub
ISIS 3> bandnorm from=PSP_001777_1650_RED.map.cub \

to=PSP_001777_1650_RED.map.norm.cub
ISIS 3> rm *RED.map.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001513_1655.map.norm.cub \

PSP_001777_1650.map.norm.cub result/output

55

Chapter 6

stereo.default
stereo.default for HiRISE Columbia Hills

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_MODE 0
COST_BLUR 0

H_KERNEL 50
V_KERNEL 50

H_CORR_MIN 210
H_CORR_MAX 450
V_CORR_MIN -320
V_CORR_MAX 320

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 25
SUBPIXEL_V_KERNEL 25

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

56

Data Processing Examples

6.2.2 East Mareotis Tholus

Prepping Files: Wall Time 04:02:11.00 CPU Time 04:05:26.81
Processing in Stereo: Wall Time 59:51:01.00 CPU Time 164:55:02.36

HiRISE observations PSP_001760_2160 and PSP_001364_2160 cover East Mareotis Tholus, a small vol-
cano in Tempe Terra.

(a) 3D Rendering (b) KML Screenshot

Figure 6.2: Example output using HiRISE images PSP_001364_2160 and PSP_001760_2160 of East
Mareotis Tholus.

Commands

Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001364_2160_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_001760_2160_RED*.IMG
ISIS 3> cam2map4stereo.py PSP_001364_2160_RED.mos_hijitreged.norm.cub \

PSP_001760_2160_RED.mos_hijitreged.norm.cub
ISIS 3> bandnorm from=PSP_001364_2160_RED.map.cub \

to=PSP_001364_2160_RED.map.norm.cub
ISIS 3> bandnorm from=PSP_001760_2160_RED.map.cub \

to=PSP_001760_2160_RED.map.norm.cub
ISIS 3> ls *.map.norm.cub > fromlist
ISIS 3> ls *1760*.map.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> rm *RED.map.norm.cub *RED.map.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001364_2160.map.norm.equ.cub \

PSP_001760_2160.map.norm.equ.cub result/output

57

http://hirise.lpl.arizona.edu/PSP_001760_2160
http://hirise.lpl.arizona.edu/PSP_001364_2160

Chapter 6

stereo.default
stereo.default for HiRISE East Mareotis Tholus

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 0
COST_MODE 0

H_KERNEL 25
V_KERNEL 25

H_CORR_MIN -80
H_CORR_MAX 150
V_CORR_MIN -80
V_CORR_MAX 50

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 25
SUBPIXEL_V_KERNEL 25

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

58

Data Processing Examples

6.2.3 North Terra Meridiani Crop

HiRISE observations PSP_001981_1825 and PSP_002258_1825 show a small crater filled by layered
material.

(a) 3D Rendering (b) KML Screenshot

Figure 6.3: Example output using cropped HiRISE data of North Terra Meridiani.

Commands

Notice here that we have applied a crop to select a subset of these HiRISE images that we are interested in.
Cropping is often an efficient way to go because it greatly reduces the amount of computation necessary to
get results in a limited area. As always, Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001981_1825_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_002258_1825_RED*.IMG
ISIS 3> cam2map from=PSP_001981_1825_RED.mos_hijitreged.norm.cub \

to=PSP_001981_1825_REDmosaic.map.cub
ISIS 3> cam2map from=PSP_002258_1825_RED.mos_hijitreged.norm.cub \

map=PSP_001981_1825_REDmosaic.map.cub \
to=PSP_002258_1825_REDmosaic.map.cub matchmap=true

ISIS 3> bandnorm from=PSP_001981_1825_REDmosaic.map.cub \
to=PSP_001981_1825_REDmosaic.map.norm.cub

ISIS 3> bandnorm from=PSP_002258_1825_REDmosaic.map.cub \
to=PSP_002258_1825_REDmosaic.map.norm.cub

ISIS 3> ls *.map.norm.cub > fromlist
ISIS 3> ls *1981*.map.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> crop from=PSP_001981_1825_REDmosaic.map.norm.equ.cub \

to=PSP_001981_1825.crop.cub sample=7497 line=41318 nsamp=10000 nline=10000
ISIS 3> crop from=PSP_002258_1825_REDmosaic.map.norm.equ.cub \

to=PSP_002258_1825.crop.cub sample=7982 line=41310 nsamp=10000 nline=10000
ISIS 3> rm *REDmosaic*.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001981_1825.crop.cub PSP_002258_1825.crop.cub result/output

59

http://hirise.lpl.arizona.edu/PSP_001981_1825
http://hirise.lpl.arizona.edu/PSP_002258_1825

Chapter 6

stereo.default
stereo.default for HiRISE North Terra Meridiani Crop

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 21
COST_MODE 2

H_KERNEL 45
V_KERNEL 45

H_CORR_MIN -270
H_CORR_MAX -70
V_CORR_MIN -14
V_CORR_MAX 26

SUBPIXEL_MODE 0

SUBPIXEL_H_KERNEL 25
SUBPIXEL_V_KERNEL 25

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

6.3 Mars Reconnaissance Orbiter CTX

CTX is a moderate camera to work with. Processing times for CTX can be pretty long because of the file
sizes involved. Luckily the disparity between images is relatively small, allowing efficient computation.

60

Data Processing Examples

6.3.1 North Terra Meridiani

Processing in Stereo: Wall Time 13:28:04.00 CPU Time 45:54:50.10

In this example, we use map projected images. Map projecting the images is the most reliable way
to align the images for correlation. However when possible, use non-map-projected images with the
DO_INTERESTPOINT_ALIGNMENT option. This greatly improves speed. For all cases using linescan cameras,
triangulation of map-projected images is 10x slower than non-map-projected images.

This example is distributed in the examples/CTX directory.

Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG
from the PDS.

ISIS 3> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub
ISIS 3> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub
ISIS 3> spiceinit from=P02_001981_1823.cub
ISIS 3> spiceinit from=P03_002258_1817.cub
ISIS 3> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub
ISIS 3> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

you can also optionally run ctxevenodd on the cal.cub files, if needed
ISIS 3> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub
ISIS 3> mkdir result
ISIS 3> stereo P02_001981_1823.map.cub P03_002258_1817.map.cub results/out

(a) 3D Rendering (b) KML Screenshot

Figure 6.4: Example output possible with the CTX imager aboard MRO.

61

Chapter 6

stereo.default
stereo.default for CTX North Terra Meridiani

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 1
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 0
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 3

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 0
COST_MODE 2

H_KERNEL 35
V_KERNEL 35

H_CORR_MIN -300
H_CORR_MAX 300
V_CORR_MIN -150
V_CORR_MAX 150

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 21
SUBPIXEL_V_KERNEL 21

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

62

Data Processing Examples

6.4 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Chapter 3, we showed you how to process a narrow angle MOC stereo
pair that covered a portion of Hrad Vallis. In this section we will show you more examples, some of which
exhibit a problem common to stereo pairs from linescan imagers: “spacecraft jitter” is caused by oscillations
of the spacecraft due to the movement of other spacecraft hardware. All spacecraft wobble around to some
degree but some, especially Mars Global Surveyor, are particularly susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan
camera images. This effect can be very subtle or quite pronounced, so it is important to check your
data products carefully for any sign of this type of artifact. The following examples will show the typical
distortions created by this problem.

Note that the science teams of HiRISE and LROC are actively working on detecting and correctly modeling
jitter in their respective SPICE data. If they succeed in this, the distortions will still be present in the raw
imagery, but the jitter will no longer produce ripple artifacts in the DEMs produced using ours or other
stereo reconstruction software.

6.4.1 Ceraunius Tholus

Prepping Files: Wall Time 00:02:42.30 CPU Time 00:02:42.06
Processing in Stereo: Wall Time 00:23:00.30 CPU Time 00:34:11.00

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This
DEM crosses the volcano’s caldera.

(a) 3D Rendering (b) KML Screenshot

Figure 6.5: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding
artifacts due to spacecraft “jitter.”

Commands

Download the M08/06047 and R07/01361 images from the PDS.

63

Chapter 6

ISIS 3> moc2isis f=M0806047.img t=M0806047.cub
ISIS 3> moc2isis f=R0701361.img t=R0701361.cub
ISIS 3> spiceinit from=M0806047.cub
ISIS 3> spiceinit from=R0701361.cub
ISIS 3> cam2map4stereo.py M0806047.cub R0701361.cub
ISIS 3> mkdir result
ISIS 3> stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default
stereo.default for MOC Ceraunius Tholus

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 1

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 12
COST_MODE 2

H_KERNEL 25
V_KERNEL 25

H_CORR_MIN -12
H_CORR_MAX 26
V_CORR_MIN -50
V_CORR_MAX 15

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 21
SUBPIXEL_V_KERNEL 21

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

64

Data Processing Examples

6.4.2 North Tharsis

Prepping Files: Wall Time 00:01:57.52 CPU Time 00:01:56.79
Processing in Stereo: Wall Time 00:24:50.70 CPU Time 01:34:37.40

These images cover troughs and terraces in northern Tharsis. This DEM is located at 20.20 N and 118.18
W on Mars.

(a) 3D Rendering (b) KML Screenshot

Figure 6.6: Example output for MOC-NA of North Tharsis.

Commands

Download the M08/03097.img and S07/01420 images from the PDS.

ISIS 3> moc2isis f=M0803097.img t=M0803097.cub
ISIS 3> moc2isis f=S0701420.img t=S0701420.cub
ISIS 3> cam2map4stereo.py M0803097.cub S0701420.cub
ISIS 3> mkdir result
ISIS 3> stereo M0803097.map.cub S0701420.map.cub result/output

65

Chapter 6

stereo.default

stereo.default for MOC North Tharsis
PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 1

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 12
COST_MODE 2

H_KERNEL 25
V_KERNEL 25

Don’t specify search range. Let it auto-detect.

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 21
SUBPIXEL_V_KERNEL 21

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

66

Data Processing Examples

6.5 Lunar Reconaissance Orbiter LROC NAC

6.5.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts
of Apollo 17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing
on the Lee-Lincoln scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible
sign of a deep fault.

(a) 3D Rendering (b) KML Screenshot

Figure 6.7: Example output possible with a LROC NA stereo pair, using only a single CCDs from obser-
vations.

Commands

Download the EDRs for the left CCDs for observations M104318871 and M104318871. Alternatively you
can search by original IDs of 2DB8 and 4C86 in the PDS.

ISIS 3> -- isis lro tools yet to be released --
ISIS 3> cam2map from=M104318871LE.cal.cub to=M104318871LE.map.cub
ISIS 3> cam2map from=M104311715LE.cal.cub map=M104318871LE.map.cub \

to=M104311715LE.map.cub matchmap=true
ISIS 3> mkdir result
ISIS 3> stereo M104318871LE.map.cub M104311715LE.map.cub result/output

67

Chapter 6

stereo.default
stereo.default for LROC NAC

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 12
COST_MODE 2

H_KERNEL 29
V_KERNEL 29

H_CORR_MIN -425
H_CORR_MAX 150
V_CORR_MIN -100
V_CORR_MAX 100

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 25
SUBPIXEL_V_KERNEL 25

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

6.6 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can
be used for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They
produce consistent, excellent results.

68

Data Processing Examples

The scans performed by ASU are sufficiently detailed to exhibit film grain at the highest resolution. The
amount of noise at the full resolution is not helpful for the correlator, so we recommended subsampling the
images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be
released into the PDS for general public usage.

6.6.1 Ansgarius C

Prepping Files
Wall Time 00:00:02.11 CPU Time 00:00:01.29
Processing in Stereo
Wall Time 01:52:23.00 CPU Time 21:36:07.61

Ansgarius C is a small crater on the west edge of the farside of the Moon near the equator. It is east of
Kapteyn A and B.

(a) 3D Rendering (b) KML Screenshot

Figure 6.8: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.

Commands

Process Apollo TIFF files into ISIS.

ISIS 3> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4
ISIS 3> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4
ISIS 3> spiceinit from=sub4-AS15-M-2380.cub
ISIS 3> spiceinit from=sub4-AS15-M-2381.cub
ISIS 3> mkdir result
ISIS 3> stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output

69

Chapter 6

stereo.default

stereo.default for Apollo 15 Metric Camera
PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 1
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 0

PREPROCESSING_FILTER_MODE 3

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_MODE 2
COST_BLUR 25

H_KERNEL 35
V_KERNEL 35

H_CORR_MIN -250
H_CORR_MAX 250
V_CORR_MIN -70
V_CORR_MAX 100

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 25
SUBPIXEL_V_KERNEL 25

Hidden advanced function
CORRSCORE_REJECTION_THRESHOLD 1.4

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

70

Data Processing Examples

6.7 MESSENGER MDIS

These results are a proof of concept showing off the strength of building the Stereo Pipeline on top of ISIS.
Support for processing MDIS stereo pairs was not a goal during our design of the software, but the fact
that an MDIS camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

For future mappers, we suggest checking out Mercury Flyby 3 data which was not available at the time of
this writing. Flyby 3 and Flyby 2 seem to have covered some of the same terrain with the narrow angle
camera.

6.7.1 Wide Angle on flyby 2

In most flyby imagery it is very hard to find good stereo pairs. This pair was taken from a single flyby
just seconds apart. Note also that this pair is taken from different wavelengths (the letter at the end of
the filename designates the current filter being used on the wide angle camera). Unfortunately there is not
enough of a perspective change here to make anything other than the spherical surface, but that alone is
still an interesting result nonetheless.

Figure 6.9: A rough attempt
at stereo reconstruction from
MDIS imagery.

Commands

ISIS 3> mdis2isis from=EW0108825359A.IMG to=EW0108825359A.cub
ISIS 3> mdis2isis from=EW0108825379C.IMG to=EW0108825379C.cub
ISIS 3> spiceinit from=EW0108825359A.cub
ISIS 3> spiceinit from=EW0108825359C.cub
ISIS 3> mkdir result
ISIS 3> stereo EW0108825359A.cub EW0108825379C.cub stereo/output

71

Chapter 6

stereo.default
stereo.default for MDIS

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 1
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 0
DO_INDIVIDUAL_NORMALIZATION 1

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_BLUR 5
COST_MODE 0

H_KERNEL 25
V_KERNEL 25

H_CORR_MIN -10
H_CORR_MAX 10
V_CORR_MIN -2
V_CORR_MAX 2

SUBPIXEL_MODE 2

SUBPIXEL_H_KERNEL 19
SUBPIXEL_V_KERNEL 19

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

72

Data Processing Examples

6.8 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support
for processing ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a
camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that
one usually has to settle with images that are not ideal: different lighting, little perspective change, and
little or no stereo parallax. So far we have had little success with Cassini’s data, but nonetheless we provide
this example as a potential starting point.

6.8.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example
shows, at the top right of both images,a giant impact basin named Tirawa that is 220 miles across. The
bright white area south of Tirawa is ejecta from a new crater. The lack of texture in this area poses a
challenge for our correlator. The results are just barely useful: the Tirawa impact can barely be made out
in the 3D data while the new crater and ejecta become only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) files from the
PDS.

ISIS 3> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub
ISIS 3> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub
ISIS 3> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub
ISIS 3> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub
ISIS 3> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the problem
ISIS 3> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub
ISIS 3> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub
ISIS 3> spiceinit fr= N1511700120_1.norm.cub
ISIS 3> spiceinit fr= W1567133629_1.norm.cub
ISIS 3> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub
ISIS 3> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \
ISIS 3> to=W1567133629_1.map.cub matchmap=true
ISIS 3> ls *.map.cub > fromlist
ISIS 3> ls N*.map.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> mkdir result
ISIS 3> stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea

73

Chapter 6

(a) Original Left Image (b) Original Right Image

(c) Map Projected Left (d) 3D Rendering

Figure 6.10: Example output of what is possible with Cassini’s ISS NAC

74

Data Processing Examples

stereo.default
stereo.default for Cassini ISS

PREPROCESSING

DO_INTERESTPOINT_ALIGNMENT 0
INTERESTPOINT_ALIGNMENT_SUBSAMPLING 0
DO_EPIPOLAR_ALIGNMENT 0

FORCE_USE_ENTIRE_RANGE 1
DO_INDIVIDUAL_NORMALIZATION 1

PREPROCESSING_FILTER_MODE 2

SLOG_KERNEL_WIDTH 1.5

CORRELATION

COST_MODE 2
COST_BLUR 11

H_KERNEL 25
V_KERNEL 25

H_CORR_MIN -55
H_CORR_MAX -5
V_CORR_MIN -2
V_CORR_MAX 10

SUBPIXEL_MODE 3 # Experimental Subpixel Mode

SUBPIXEL_H_KERNEL 21
SUBPIXEL_V_KERNEL 21

FILTERING

RM_H_HALF_KERN 5
RM_V_HALF_KERN 5
RM_MIN_MATCHES 60 # Units = percent
RM_THRESHOLD 3
RM_CLEANUP_PASSES 1

FILL_HOLES 1

DOTCLOUD

NEAR_UNIVERSE_RADIUS 0.0
FAR_UNIVERSE_RADIUS 0.0

75

76

Part III

Appendices

77

Appendix A

Tools

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline,
and a summary of their command line options.

A.1 stereo

The stereo program is the primary workhorse of the Ames Stereo Pipeline. It takes a stereo pair of images
that overlap and creates an output point cloud image that can be processed into a 3D model or DEM using
the point2mesh or point2dem programs, respectively.

Usage:
ISIS 3> stereo [options] Left_input_image Right_input_image output_file_prefix

This release of the stereo pipeline has been specifically designed to process USGS ISIS .cub files. However,
the stereo pipeline does have the capability to process other types of stereo image pairs (e.g. image files
with a CAHVOR camera model from the NASA MER rovers). If you would like to experiment with these
features, please contact us for more information.

The output_file_prefix is prepended to all output data files. For example, setting output_file_prefix
to ‘out’ will yield files with names like out-L.tif and out-PC.tif. To keep stereo pipeline results organized
in sub-directories, we recommend using an output prefix like ‘results-10-12-09/out’ for output_file_prefix .
The stereo program will create a directory called results-10-12-09/out and place files named out-L.tif,
out-PC.tif, etc. in that directory.

Table A.1: Command-line options for stereo

Option Description
--help|-h Display this help information
--threads integer(=0) Set the number threads to use. 0 means use

default defined in the program or in the .vwrc
file

--session-type|-t pinhole|isis Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically for the file extension.

--stereo-file|-s filename(=./stereo.default) Define the stereo.default file to use
--entry-point|-e 1|2|3|4 Pipeline entry point

79

Chapter A

-draft-mode debug-image-prefix Cause the pyramid correlator to save out de-
bug imagery named with this prefix

--optimized-correlator Cause scale space search to not be performed
and will hurt quality. This option is for soft-
ware debugging.

More information about the stereo.default configuration file can be found in Appendix B on page 89.
Similarly, stereo creates a lot of files, and they are all described in Appendix C on page 95.

A.1.1 Entry Points

The stereo -e number option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be handy when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) normalizes the two images and aligns them by locating interest points and matching
them in both images. The program is designed to reject outlying interest points. This stage writes out the
pre-aligned images and the image masks.

Stage 1 (Disparity Map Initialization) performs pyramid correlation and builds a rough disparity map that
is used to seed the sub-pixel refinement phase.

Stage 2 (Sub-pixel Refinement) performs sub-pixel correlation that refines the disparity map.

Stage 3 (Outlier Rejection and Hole Filling) performs filtering of the disparity map and (optionally) fills in
holes using an inpainting algorithm. This phase also creates a “good pixel” map.

Stage 4 (Triangulation) generates a 3D point cloud from the disparity map.

A.1.2 Decomposition of Stereo

Users watching their system closely will notice that the stereo executable is actually a python script that
makes calls to seperate C++ executables for each entry point.

Stage 0 (Preprocessing) calls stereo_pprc. Multithreaded.

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multithreaded.

Stage 2 (Sub-pixel Refinement) class stereo_rfne. Multithreaded.

Stage 3 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multithreaded.

Stage 4 (Triangulation) calls stereo_tri. Single-Threaded.

All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs
on a cluster my find it advantageous to call these executables in their own manner. An example would be
to run stages 0-3 in order for each stereo pair. Then run several sessions of stereo_tri since it is single
threaded.

A.2 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several different versions of the disparity map; the most important ending with
extensions *-D.tif and *-F.tif. (see Appendix C for more information.) These raw disparity map files can

80

Tools

be useful for debugging because they contain raw disparity values as measured by the correlator; however
they cannot be directly visualized or opened in a conventional image browser. The disparitydebug tool
converts a single disparity map file into two normalized TIFF image files (*-H.tif and *-V.tif, containing
the horizontal and vertical, or line and sample, components of disparity, respectively) that can be viewed
using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can
serve as useful summary statistics when tuning the search range settings in the stereo.default file.

Table A.2: Command-line options for disparitydebug

Options Description
--help|-h Display this help
--input-file filename Explicitly specify the input file
--output-prefix|-o filename specify the output file prefix
--output-filetype|-t type(=tif) Specify the outfile type
--float-pixels Save the resulting debug images as 32 bit floating point files

(if supported by the selected file type)

A.3 point2dem

The point2dem program produces a GeoTIFF terrain model or an orthographic image from a point cloud
image produced by the stereo command.

Example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--default-value -10000 -n

This produces a digital elevation model that has been referenced to the lunar spheroid of 1737.4 km. Pixels
with no data will be set to a value of -10000, and the resulting DEM will be saved in a simple cylindrical
map projection. The resulting DEM is stored by default as a one channel, 32-bit floating point GeoTIFF
file.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard
image viewing application for debugging.

Another example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--orthoimage output-prefix -L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced
by the Stereo Pipeline. The resulting *-DRG.tif file will be saved as an 8-bit GeoTIFF image in a simple
cylindrical map projection.

Table A.3: Command-line options for point2dem

Options Description
--help|-h Display this table
--default-value float(=min-z) Explicitly set the default missing pixel value. By default,

the minimum z value in the model is used.
--use-alpha Create images that have an alpha channel
--dem-spacing|-s float(=0) Set the DEM post size (if this value is 0, the post spacing

size is computed for you)

81

Chapter A

--normalized|-n Also write a normalized version of the DEM (for debugging)
--orthoimage texture-file Write an orthoimage based on the texture file given as an

argument to this command line option
--grayscale Use grayscale image processing for creating the orthoimage
--offset-files Also write a pair of ASCII offset files (for debugging)
--input-file pointcloud-file Explicitly specify the input file
--texture-file texture-file Explicitly specify the texture file
--output-prefix|-o output-prefix Specify the output prefix
--output-filetype|-t type(=tif) Specify the output file type
--reference-spheroid|-r moon|mars Set a reference surface to a hard coded value. This will

override manually set datum information.
--semi-major-axis float(=0) Set the dimensions of the datum in meters
--semi-minor-axis float(=0) Set the dimensions of the datum in meters
--x-offset float(=0) Add a horizontal offset to the DEM
--y-offset float(=0) Add a horizontal offset to the DEM
--z-offset float(=0) Add a vertical offset to the DEM
--sinusoidal Save using a sinusoidal projection
--mercator Save using a Mercator projection
--transverse-mercator Save using transverse Mercator projection
--orthographic Save using an orthographic projection
--stereographic Save using a stereographic projection
--lambert-azimuthal Save using a Lambert azimuthal projection
--utm zone Save using a UTM projection with the given zone
--proj-lat float The center of projection latitude (if applicable)
--proj-lon float The center of projection longitude (if applicable)
--proj-scale float The projection scale (if applicable)
--rotation-order order(=xyz) Set the order of an euler angle rotation applied to the 3D

points prior to DEM rasterization
--phi-rotation float(=0) Set a rotation angle phi
--omega-rotation float(=0) Set a rotation angle omega
--kappa-rotation float(=0) Set a rotation angle kappa
--cache-dir path(=/tmp) Sets directory to use for temporary files. Specify another

directory if system is restrictive to large files in /tmp.

A.4 point2mesh

Produces a mesh surface that can be visualized in osgviewer, which is a standard 3D viewing application
that is part of the open source OpenSceneGraph package. 1

Unlike DEMs, The 3D mesh is not meant to be used as a finished scientific product. Rather, it can be used
for fast visualization to create a 3D view of the generated terrain.

The point2mesh program requires a point cloud file and an optional texture file (output-prefix -PC.tif
and normally output-prefix -L.tif). When a texture file is not provided, a 1D texture is applied in the
local Z direction that produces a rough rendition of a contour map. In either case, point2mesh will produce
a output-prefix.ive file that contains the 3D model in OpenSceneGraph format.

1
The full OpenSceneGraph package is not bundled with the Stereo Pipeline, but the osgviewer program is. You can

download and install this package separately from http://www.openscenegraph.org/.

82

http://www.openscenegraph.org/

Tools

Two options for osgviewer bear pointing out: the -l flag indicates that synthetic lighting should be
activated for the model, which can make it easier to see fine detail in the model by providing some real-
time, interactive hillshading. The -s flag sets the sub-sampling rate, and dictates the degree to which the
3D model should be simplified. For 3D reconstructions, this can be essential for producing a model that
can fit in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In
other words that mean only 1/102 of the points are being used to create the model. Adjust this sampling
rate according to how much detail is desired, but remember that large models will impact the frame rate
of the 3D viewer and affect performance.

Example:
point2mesh -l -s 2 output-prefix -PC.tif output-prefix -L.tif

To view the resulting output-prefix.ive file use osgviewer.

Fullscreen:
> osgviewer output-prefix.ive

or Windowed:
> osgviewer output-prefix.ive --window 50 50 1000 1000

Inside osgviewer, the keys L, T, and W can be used to toggle on and off lighting, texture, and wireframe
modes. The left, middle, and right mouse buttons control rotation, panning, and zooming of the model.

Table A.4: Command-line options for point2mesh

Options Description
--help|-h Display this help
--simplify-mesh float Run OSG Simplifier on mesh, 1.0 = 100%
--smooth-mesh Run OSG Smoother on mesh
--use-delaunay Uses the delaunay triangulator to create a surface from the

point cloud. This is not recommended for point clouds with
noise issues.

--step|-s integer(=10) Sampling step size for mesher.
--input-file pointcloud-file Explicitly specify the input file
--texture-file texture-file Explicitly specify the texture file
--output-prefix|-o output-prefix Specify the output prefix
--output-filetype|-t type(=ive) Specify the output file type
--enable-lighting|-l Enables shades and light on the mesh
--center Center the model around the origin. Use this option if you

are experiencing numerical precision issues.
--rotation-order order(=xyz) Set the order of an euler angle rotation applied to the 3D

points prior to DEM rasterization
--phi-rotation float(=0) Set a rotation angle phi
--omega-rotation float(=0) Set a rotation angle omega
--kappa-rotation float(=0) Set a rotation angle kappa

83

Chapter A

A.5 orbitviz

Produces a Google Earth KML file useful for visualizing camera position. The input for this tool is one or
more *.cub files.

Table A.5: Command-line options for orbitviz

Options Description
--help|-h Display this help
--output|-o filename(=orbit.kml) Specifies the output file name
--scale|-s float(=1) Scale the size of the coordinate axes by this amount. Ex: To

scale axis sizes up to earth size, use 3.66
--use_path_to_dae_model|-u fullpath Use this dae model to represent camera location. Google

Sketch up can create these.

Figure A.1: Example of a KML visualization produced with orbitviz depicting camera locations for the
Apollo 15 Metric Camera during orbit 33 of the Apollo command module.

84

Tools

A.6 isis_adjust

Bundle Adjustment for ISIS images. This tool supports adjustment of linescan cameras as well as simple
frame cameras. For an in depth view into how to use this tool, please read Chapter 5.

Table A.6: Command-line options for isis_adjust

Options Description
--help|-h Display this help
--cnet|-c control-network-file Load a control network from a file
--cost-function function(=L2) Choose a robust cost function from

[L1|L2|Cauchy|Huber|PseudoHuberL1|L2|Cauchy|
Huber|PseudoHuber]

--bundle-adjuster adjuster(=Sparse) Choose a bundle adjustment version from
[Ref|Sparse|RobustRef|RobustSparse|RobustSparseKGCP]

--disable-camera-const Disable the camera constraint error. This allows the cameras
to move to pretty much anywhere.

--disable-gcp-const Disable the GCP constraint error.
--gcp-scalar multiplier(=1) Sets a scalar to multiply to the sigmas (uncertainty) defined

for the gcps. GCP sigmas are defined in the .gcp files.
--lamda|-l float Set the initial value of the LM paramater g_lambda. If not

set the algorithm will find the optimum starting point.
--min-matches integer(=30) Set the minimum number of matches between images that

will be considered.
--max-iterations integer(=25) Set the maximum number of iterations
--poly-order integer(=0) Set the order of the polynomial used to adjust the camera

properties. If using a frame camera, leave at 0 (meaning
scalar offsets). For line scan cameras try 2.

--position-sigma float(=100) Set the sigma (uncertainty) of the spacecraft position. (me-
ters)

--pose-sigma float(=0.1) Set the sigma (uncertainty) of the spacecraft pose. (radians)
--report-level|-r integer(=10) Changes the detail of the Bundle Adjustment Report. Valid

values are 0 to 100
--robust-threshold float(=10) Set the threshold for robust cost functions.
--save-iteration-data|-s Saves all camera/point/pixel information between iterations

for later viewing in bundlevis
--seed-with-previous Use previous isis_adjust files at starting for this run
--write-isis-cnet-also Writes an ISIS style control network
--write-kml [0|1(=0)] Selecting this will cause a KML file to be written with the

GCPs. Set this flag to 1 and it will also write all the 3D
position estimates of the points it is tracking in the KML.

85

Chapter A

A.7 bundlevis

The bundlevis program is a bundle adjustment result visualizer. See Chapter 5 for more information.

Table A.7: Command-line options for bundlevis

Options Description
--help|-h Display this help
--camera-iteration-file|-c filename Load the camera parameters for each iteration from this file
--points-iteration-file|-p filename Load the 3D points parameters for each iteration from this

file
--pixel-iteration-file|-x filename Load pixel information data. Allowing for an illustration of

the pixel data over time
--control-network-file|-n filename Load a control network for point and camera relationship

status
--additional-pnt-files filename(s) Plot additional point files simultaneously with the above

data
--fullscreen Render with the entire screen
--stereo Render in anagylph mode
--show-moon Draw a wireframe moon
--show-mars Draw a wireframe mars
--show-earth Draw a wireframe earth

86

Tools

A.8 cam2map4stereo.py

This program takes similar arguments as the ISIS3 cam2map program, but takes two input images. With
no arguments, the program determines the minimum overlap of the two images, and the worst common
resolution, and then map-projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py
does is provided in the disucssion on aligning images on page 18.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the
full image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it,
select the latitude and longitude ranges, and then use cam2map4stereo.py’s --lat, --lon, and optionally
--resolution options to pick out just the part you want.

Use the --dry-run option the first few times to get an idea of what cam2map4stereo.py does for you.

Table A.8: Command-line options for cam2map4stereo.py

Options Description
--help|-h Display this help
--manual Read the manual.
--map=MAP |-m MAP The mapfile to use for cam2map.
--pixres=PIXRES |-p PIXRES The pixel resolution mode to use for cam2map.
--resolution=RESOLUTION |-r RESOLUTION Resolution of the final map for cam2map.
--interp=INTERP |-i INTERP Pixel interpolation scheme for cam2map.
--lat=LAT |-a LAT Latitude range for cam2map, where LAT is of the form

min:max. So to specify a latitude range between -5 and 10
degrees, it would look like --lat=-5:10.

--lon=LON |-o LON Longitude range for cam2map, where LON is of the form
min:max. So to specify a longitude range between 45 and
47 degrees, it would look like --lon=40:47.

--dry-run|-n Make calculations, and print the cam2map command that
would be executed, but don’t actually run it.

--suffix|-s Suffix that gets inserted in the output file names, defaults to
‘map’.

87

88

Appendix B

The stereo.default File

The stereo.default file contains configuration parameters that the stereo program uses to process images.
The stereo.default file is loaded from the current working directory when you run stereo unless you
specify a different file using the -s option. Run stereo --help for more information.

Below we will walk through the contents of the stereo.default and discuss its various parameters. If you
want to start with a clean slate, you can copy the stereo.default.example file that is included in the top
level of the Stereo Pipeline software distribution.

Note: The parameters that begin with ‘DO_*’ are true/false options, when set to ‘1’ they are ‘on’ or ‘true,’
and if set to ‘0’ they are ‘off’ or ‘false.’ All parameters below have their default values listed after the
parameter name.

B.1 Preprocessing

CACHE_DIR (default = /tmp)
Place for to store intermediate files for when Stereo Pipeline can’t store entire image in memory. User
should change directory if operating system has limit on filesize inside the /tmp directory.

DO_INTERESTPOINT_ALIGNMENT (default = 0)
When DO_INTERESTPOINT_ALIGNMENT is set to 1, stereo will attempt to pre-align the images by
automatically detecting tie-points between images using a feature based image matching technique.
Tiepoints are stored in a *.match file that is used to compute a linear affine transformation of the
right image so that it closely matches the left image. Note: the user may exercise more control over
this process by using the ipfind and ipmatch tools.

INTERESTPOINT_ALIGNMENT_SUBSAMPLING (= 1,2,3,...,N) (default = 1)
This settings is only for the “keypoint” stereo session. It is not used for the “isis” stereo session.
Use this option to subsample images before interest point alignment when
DO_INTERESTPOINT_ALIGNMENT is activated. This can significantly speed up the interest
point alignment step at the expense of alignment accuracy. When this is set to 1, there is no subsam-
pling, and the stereo program will do its best to find as many interest points within the imagery as
it can. When this is set to N > 1, the program will subsample the images by a factor of N before
detecting interest points. This parameter can be set to any positive integer.

DO_EPIPOLAR_ALIGNMENT (default = 0)
Epipolar alignment is only available when performing stereo matches using the pinhole stereo session
(i.e. when using stereo -t pinhole), and cannot be used when processing ISIS images at this time.

89

Chapter B

This method uses the inherent underlining geometry of the cameras to create a rectified version of
the images where stereo disparity occurs only in the horizontal direction.

FORCE_USE_ENTIRE_RANGE (= 0,1) (default = 0)
This setting is only for ISIS stereo session.
By default, the Stereo Pipeline will normalize ISIS images so that their maximum and minimum
channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you want to
disable normalization in the stereo pipeline and force the raw values to pass directly to the stereo
correlations algorithms.
For example, if ISIS’s histeq has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.

DO_INDIVIDUAL_NORMALIZATION (default = 0)
This setting is only for ISIS stereo session.
By default, the maximum and minimum valid pixel value is determined by looking at both images.
Normalized with the same “global” min and max guarantees that the two images will retain their
brightness and contrast relative to each other.
This option forces each image to be normalized to its own maximum and minimum valid pixel value.
This is useful in the event that images have different and non-overlapping dynamic ranges. You can
sometimes tell when this option is needed: after a failed stereo attempt one of the rectified images
(*-L.tif and *-R.tif) may be either mostly white or black. Activating this option may correct this
problem.
Note: Photometric calibration and image normalization are steps that can and should be carried out
beforehand using ISIS’s own utilities. This provides the best possible input to the stereo pipeline and
yields the best stereo matching results.

PREPROCESSING_FILTER_MODE (= 0,1,2,3) (default = 3)
This selects the pre-processing filter to be used to prepare imagery before it is fed to the initialization
stage of the pipeline.

0 - None
1 - Gaussian Blur - Pre-blur images using a Gaussian kernel. This option can improve correlation

results by blurring out small-scale image noise.
2 - LoG Filter - Same as above, but take the Laplacian of the result. This provides some immunity

to differences in lighting conditions between a pair of images by isolating and matching on edge
features in the image.

3 - Signed LoG Filter - Same as above, but retain only the sign of the Laplacian image (+1 or -1).
This option provides the best immunity to variations in lighting conditions between images.

For modes 1, 2, and 3 above, the size of the Gaussian blur is determined by the SLOG_KERNEL_WIDTH
variable below.
The choice of pre-processing filter must be made with thought to the cost function being used (see
COST_MODE, below). LoG filter preprocessing provides good immunity to variations in lighting
conditions and is usually the recommended choice. Blurred preprocessing can sometimes produce
the best results with well-calibrated images when working with the normalized cross correlation cost
function.

SLOG_KERNEL_WIDTH (= float) (default = 1.5)
This defines the diameter of the Gaussian convolution kernel used for the preprocessing modes 1, 2,
and 3 above. A value of 1.5 works well in a variety of applications.

90

The stereo.default File

B.2 Correlation

COST_MODE (= 0,1,2) (default = 2)

This defines the cost function used during integer correlation. Squared difference is the fastest cost
function. However it comes at the price of not being resilient against noise. Absolute difference is
the next fastest and is a better choice. Normalized cross correlation is the slowest but is designed
to be more robust against image intensity changes and slight lighting differences. Normalized cross
correlation is about 2x slower than absolute difference and about 3x slower than squared difference.

0 - absolute difference
1 - squared difference
2 - normalized cross correlation

COST_BLUR (= integer N >= 0) (default = 0)
Reduces the number of missing pixels by blurring the fitness landscape computed by the cost function
by an N ×N box filter. Increases the number of stereo matches during initialization at the expense of
overall accuracy. Cost blurring must be used in conjunction with affine adaptive window
subpixel modes below, which are capable of achieving highly accurate results even when
seeded by slightly inaccurate matches from the initialization step.

H_KERNEL (= integer) (default = 25)

V_KERNEL (= integer) (default = 25)
These two items determine the size (in pixels) of the correlation kernel used in the initialization step.
A different size can be set in the horizontal (H) and vertical (V) directions, but square correlation
kernels are almost always used in practice.

H_CORR_MIN (= integer)

H_CORR_MAX (= integer)

V_CORR_MIN (= integer)

V_CORR_MAX (= integer)
These parameters determine the size of the initial correlation search range. The ideal search range
depends on a variety of factors ranging from how the images were pre-aligned to the resolution and
range of disparities seen in a given image pair. This search range is successively refined during
initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of
the disparities in a given image. However, setting tighter bounds on the search can sometimes reduce
the number of erroneous matches, so it can be advantageous to tune the search range for a particular
data set.
Note: Commenting out these settings will cause stereo to make an attempt to guess its search range
using interest points.

SUBPIXEL_MODE (= 0,1,2,3) (default = 2)
This parameter selects the subpixel correlation method. These algorithms are arranged in order of
decreasing speed and increasing quality. Parabola subpixel is very fast but will produce results that
are only slightly more accurate than those produced by the initialization step. Bayes EM (mode 2)
is very slow but offers the best quality. When tuning stereo.default parameters, it is expedient to
start out using parabola subpixel as a “draft mode.” When the results are looking good with parabola
subpixel, then they will look even better with subpixel mode 2.

91

Chapter B

0 - no subpixel refinement
1 - parabola fitting
2 - affine adaptive window, Bayes EM weighting
3 - affine adaptive window, Bayes EM with Gamma Noise Distribution (experimental)

For a visual comparison of the quality of these subpixel modes, refer back to Chapter:4.

SUBPIXEL_H_KERNEL (= integer) (default = 35)

SUBPIXEL_V_KERNEL (= integer) (default = 35)
Specify the size of the horizontal (H) and vertical (V) size (in pixels) of the subpixel correlation
kernel.

B.3 Filtering

RM_H_HALF_KERN (= integer) (default = 5)

RM_V_HALF_KERN (= integer) (default = 5)
Taken together, the RM_* settings adjust the behavior of an outlier rejection scheme that “erodes”
isolated regions of pixels in the disparity map that are in disagreement with their neighbors.
The RM_H_HALF_KERN and RM_V_HALF_KERN parameters determine the size of the half
kernel that is used to perform the automatic removal of low confidence pixels. A 5 × 5 half kernel
would result in an 11× 11 kernel with 121 pixels in it.

RM_MIN_MATCHES (= integer) (default = 60)
This parameter sets the percentage of neighboring disparity values that must fall within the inlier
threshold in order for a given disparity value to be retained.

RM_THRESHOLD (= integer) (default = 3)
This parameter sets the inlier threshold for the outlier rejection scheme. This option works in con-
junction with RM_MIN_MATCHES above. A disparity value is rejected if it differs by more than
RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered.

RM_CLEANUP_PASSES (= integer) (default = 1)
Select the number of outlier removal passes that are carried out. Each pass will erode pixels that do
not match their neighbors. One pass is usually sufficient.

FILL_HOLES (= 0,1) (default = 1)
When this option is on, the holes in the disparity map that result from poor stereo matching will be
filled by an inpainting algorithm. Inpainting is a convolution method that takes the values at the
edges of holes and spreads those values inward. This method performs best for small holes.
Note: you can always use the good pixel mask image (*-GoodPixelMap.TIF) to determine which
pixels represent “real” data matched by the stereo correlator, and which pixels represent interpolated
data produced by inpainting.

FILL_HOLE_MAX_SIZE (= integer) (default = 100,000)
This defines the maximum size of a hole that the inpainting technique should attempt. Default is
100,000 pixels.

92

The stereo.default File

B.4 Post-Processing

NEAR_UNIVERSE_RADIUS (= float) (default = 0.0)

FAR_UNIVERSE_RADIUS (= float) (default = 0.0)
These parameters can be used to filter out triangulated points in the 3D point cloud by setting an
near and far radius value from origin of the point cloud’s coordinate system, [0,0,0]. For most ISIS
cameras, the origin is the center of the body (e.g. the Moon or Mars), and is part of a body-fixed
Cartesian coordinate system that rotates with the planet.
These settings are most useful for other stereo session types (e.g. pinhole), where the origin of the
coordinate system is often one of the cameras in a stereo pair. In this case, these parameters can be
used to reject pixels that are too close or too far from the camera system.
Setting both values zero turns off this restriction and allows the dot cloud to be as big as the data
allows for.

93

94

Appendix C

Guide to Output Files

The stereo tool generates a variety of intermediate files that are useful for debugging. These are listed
below, along with brief descriptions about the contents of each file. Note that the prefix of the filename for
all of these files is dictated by the final command line argument to stereo. Run stereo --help for details.

*.vwip - image feature files
If DO_INTERESTPOINT_ALIGNMENT is enabled, the stereo pipeline will automatically search for image
features to use for tie-points. Raw image features are stored in *.vwip files; one per input image. For
example, if your images are left.cub and right.cub you’ll get left.vwip and right.vwip. Note:
these files can also be generated by hand (and with finer grained control over detection algorithm
options) using the ipfind utility.

*.match - image to image tie-points
The match file lists a select group of unique points out of the previous .vwip files that have been
identified and matched in a pair of images. For example, if your images are left.cub and right.cub
you’ll get a left__right.match file.

The .vwip and .match files are meant to serve as cached tie-point information, and they help speed
up the pre-processing phase of the stereo pipeline: if these files exist then the stereo program will
skip over the interest point alignment stage and instead use the cached tie-points contained in the
*.match files. In the rare case that one of these files did get corrupted or your input images have
changed, you may want to delete these files and allow stereo to regenerate them automatically. This
is also recommended if you have upgraded the Stereo Pipeline software.

*-L.tif - rectified left input image
The left input image of the stereo pair, saved after the pre-processing step. This image may be
normalized, but should otherwise be identical to the original left input image.

*-R.tif - rectified right input image
Right input image of the stereo pair, after the pre-processing step. This image may be normalized
and possibly translated, scaled, and/or rotated to roughly align it with the left image, but should
otherwise be identical to the original right input image.

*-lMask.tif - mask for left rectified image

*-rMask.tif - mask for right rectified image
These files contain binary masks for the input images. These are used throughout the stereo process
to mask out pixels where there is no input data.

95

Chapter C

*-align.exr - pre-alignment matrix
The 3 × 3 affine transformation matrix that was used to warp the right image to roughly align
with the left image. This file is only generated if DO_INTERESTPOINT_ALIGNMENT is enabled in the
stereo.default file.

*-D.tif - disparity map after the disparity map initialization phase
This is the disparity map generated by the correlation algorithm in the initialization phase. It contains
integer values of disparity that are used to seed the subsequent sub-pixel correlation phase. It is largely
unfiltered, and may contain some bad matches.
Disparity map files are stored in OpenEXR format as 3-channel, 32-bit floating point images. (Channel
0 = horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation
This file contains the disparity map after sub-pixel refinement. Pixel values now have sub-pixel
precision, and some outliers have been rejected by the sub-pixel matching process.

*-F-corrected.tif - intermediate data product
Only created when DO_INTERESTPOINT_ALIGNMENT is on. This is *-F.tif with effects of interest point
alignment removed.

*-F.tif - filtered disparity map
The filtered, sub-pixel disparity map with outliers removed (and holes filled with the inpainting
algorithm if FILL_HOLES is on). This is the final version of the disparity map.

*-GoodPixelMap.tif - map of good pixels
An image showing which pixels were matched by the stereo correlator (gray pixels), and which were
filled in by the hole filling algorithm (red pixels).

*-PC.tif - point cloud image
The point cloud image is generated by the triangulation phase of the Stereo Pipeline. It contains 3D
locations for each valid pixel; stored as a 64-bit, 3-channel TIFF, with coordinates in a body-fixed
planetocentric coordinate system. Each pixel in the point cloud image corresponds to a pixel in the
left input image.
Note: it is unlikely that your usual TIFF viewing programs will visualize this file properly. This file
should be considered a ‘data’ file, not an ‘image’ file. Other programs in the Stereo Pipeline, such as
point2mesh and point2dem will convert the contents of this file to more easily visualized formats.

*-stereo.default - backup of the stereo pipeline settings file
This is a copy of the stereo.default file used by stereo. It is stored alongside the output products
as a record of the settings that were used for this particular stereo processing task.

96

Appendix D

Modifying SURF to output VW match files

SURF v1.0.9 is a fast a relatively robust interest point algorithm. It is not open source, but it is freely
available for academic uses at http://www.vision.ee.ethz.ch/~surf/. This software is currently only
available for Windows and Linux 32 bit.

SURF creates it own results files. What is available online was probably only meant for demonstrations.
What we’ve done is created a patch that allows the SURF match utility, match.ln, to create Vision
Workbench match files. The patch is available as the surf_match.patch in the examples/ directory of the
Stereo Pipeline distribution.

D.1 How to apply and compile

First move to the directory containing your copy of the SURF v1.0.9 code. Then copy surf_match.patch
to the active directory. At this point you are ready to start running the following commands.

> patch < surf_match.patch
> make match.ln

Note:
If you are unfortunate enough to run into an error such as g++-4.0.2: Command
not found, don’t worry. Edit Makefile at line 10 and 11 to refer to g++ instead of
g++-4.0.2.

Also since you’ve incurred that error, you’ll probably need to add an include
to <stdlib.h> in imload.cpp in the same directory. This all stems from differences
in using a newer version of g++.

D.2 Example of using SURF

For this example it is assumed you have a directory containing two images named m1000254.png and
r0901059.png like in the example found in Section 5.3.

SURF code only works with images in the grayscale format PGM. A free Linux utility to convert the images
is mogrify. That utility is part of the package ImageMagick and is likely to be available in most package
managers.

97

http://www.vision.ee.ethz.ch/~surf/

Chapter D

Below are the commands to take an input of PNG files, process them with SURF, and then finally create
a match file which can be used by isis_adjust.

> mogrify -format pgm m1000254.png r0901059.png
> surf.ln -i m1000254.pgm -o m1000254.surf
> surf.ln -i r0901059.pgm -o r0901059.surf
> match.ln -k1 m1000254.surf -k2 r0901059.surf \

-im1 m1000254.pgm -im2 r0901059.pgm \
-o out.pgm -m m1000254__r0901059.match

> rm m1000254.pgm r0901059.pgm *.surf

It is important to note that though SURF is very good at performing matches it
does not perform a step of RANSAC with its output. There may be a couple of
outliers.

98

Bibliography

[1] J. A. Anderson, S. C. Sides, D. L. Soltesz, T. L. Sucharski, and K. J. Becker. Modernization of the
Integrated Software for Imagers and Spectrometers. In S. Mackwell and E. Stansbery, editors, Lunar
and Planetary Science XXXV, number #2039. Lunar and Planetary Institute, Houston (CD-ROM),
March 2004.

[2] J.A. Anderson. ISIS Camera Model Design. In Proc of the Lunar and Planetary Science Conference
(LPSC) XXXIX, page 2159, March 2008.

[3] Simon Baker, Ralph Gross, and Iain Matthews. Lucas-Kanade 20 Years On: A Unifying Framework.
International Journal of Computer Vision, 56:221–255, 2004.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.
In Computer Vision and Image Understanding (CVIU), volume 110, pages 346–359, 2008. URL http:
//www.vision.ee.ethz.ch/~surf/.

[5] Michael Broxton, Ara V. Nefian, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V.
Segal. 3D Lunar Terrain Reconstruction from Apollo Images . In to appear in the Proceedings of the
5th International Symposium on Visual Computing, 2009.

[6] The Open Scene Graph Community. The open scene graph website. 2009. URL http://www.
openscenegraph.org/projects/osg.

[7] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography. Graphics and Image Processing,
24(6), June 1981.

[8] L. Gaddis, J. Anderson, K. Becker, T. Becker, D. Cook, K. Edwards, E. Eliason, T. Hare, H. Kieffer,
E. M. Lee, J. Mathews, L. Soderblom, T. Sucharski, J. Torson, A. McEwen, and M. Robinson. An
Overview of the Integrated Software for Imaging Spectrometers (ISIS). In Lunar and Planetary Science
Conference, volume 28, page 387, March 1997.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004.

[10] M. C. Malin and K. S. Edgett. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise
through primary mission. Journal of Geophysical Research, 106(E10):23429–23570, October 2001.

[11] M. C. Malin, G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, and T. A.
Soulanille. Mars Observer Camera. Journal of Geophysical Research, 97(E5):7699–7718, May 1992.

[12] Christian Menard. Robust Stereo and Adaptive Matching in Correlation Scale-Space. PhD thesis,
Institute of Automation, Vienna Institute of Technology (PRIP-TR-45), January 1997.

[13] Zach Moore, Dan Wright, Chris Lewis, and Dale Schinstock. Comparison of bundle adjustment for-
mulations. In ASPRS Annual Conf., Baltimore, Maryland, 2009.

99

http://www.vision.ee.ethz.ch/~surf/
http://www.vision.ee.ethz.ch/~surf/
http://www.openscenegraph.org/projects/osg
http://www.openscenegraph.org/projects/osg

Chapter D

[14] Ara V. Nefian, Kyle Husmann, Michael Broxton, Mattew D. Hancher, and Michael Lundy. A Bayesian
Formulation for Subpixel Refinement in Stereo Orbital Imagery. In to appear in the Proceedings of the
2009 IEEE International Conference on Image Processing, 2009.

[15] H.K. Nishihara. PRISM: A Practical real-time imaging stereo matcher. Optical Engineering, 23(5):
536–545, 1984.

[16] Andrew Stein, Andres Huertas, and Larry Matthies. Attenuating stereo pixel-locking via affine window
adaptation. In IEEE International Conference on Robotics and Automation, pages 914 – 921, May
2006.

[17] Changming Sun. Rectangular Subregioning and 3-D Maximum-Surface Techniques for Fast Stereo
Matching. International Journal of Computer Vision, 47(1-3), 2002.

[18] Richard Szeliski and Daniel Scharstein. Sampling the Disparity Space Image. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 26:419 – 425, 2003.

[19] Bill Triggs, Philip F. Mclauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment
– a modern synthesis. Lecture Notes in Computer Science, 1883:298+, January 2000.

[20] Tuscon University of Arizona. The high resolution imaging science experiment. 2009. URL http:
//hirise.lpl.arizona.edu/.

[21] AZ U.S. Geological Survey, Flagstaff. Integrated software for imagers and spectrometers (ISIS). 2009.
URL http://isis.astrogeology.usgs.gov/.

100

http://hirise.lpl.arizona.edu/
http://hirise.lpl.arizona.edu/
http://isis.astrogeology.usgs.gov/

	Introduction
	Background
	Human vs. Computer: When to Choose Automation
	Software Foundations
	NASA Vision Workbench
	The USGS Integrated Software for Imagers and Spectrometers

	Getting Help
	Typographical Conventions
	Referencing the Ames Stereo Pipeline in your own work
	Warnings to users of the Ames Stereo Pipeline

	I Getting Started
	Installation
	Binary Installation
	Quick Start
	Common Traps

	Source Installation
	Dependency List
	Build System

	Settings Optimization

	Tutorial: Processing Mars Orbiter Camera Imagery
	Quick Start
	Preparing the Data
	Loading and Calibrating Images using ISIS
	Aligning Images

	Running the Stereo Pipeline
	Setting Options in the stereo.default File
	Performing Stereo Correlation
	Diagnosing Problems

	Visualizing the Results
	Building a 3D Model
	Building a Digital Elevation Model
	Generating Color Hillshade Maps
	Building Overlays for Moon and Mars mode in Google Earth

	II The Stereo Pipeline in Depth
	Correlation
	Pre-processing
	Disparity Map Initialization
	Debugging Disparity Map Initialization

	Sub-pixel Refinement
	Triangulation

	Bundle Adjustment
	A deeper understanding
	Performing bundle adjustment with isis_adjust
	Options

	Visualizing bundle adjustment with bundlevis
	Options
	Controls

	Examples of Use
	Processing Mars Orbital Camera
	Processing with Ground Control Points
	Sharing Data with ISIS 3's qnet program

	Data Processing Examples
	Guidelines for Selecting Stereo Pairs
	Combatting long run times
	Comparing Examples to your System

	Mars Reconnaissance Orbiter HiRISE
	Columbia Hills
	East Mareotis Tholus
	North Terra Meridiani Crop

	Mars Reconnaissance Orbiter CTX
	North Terra Meridiani

	Mars Global Surveyor MOC-NA
	Ceraunius Tholus
	North Tharsis

	Lunar Reconaissance Orbiter LROC NAC
	Lee-Lincoln Scarp

	Apollo 15 Metric Camera Images
	Ansgarius C

	MESSENGER MDIS
	Wide Angle on flyby 2

	Cassini ISS NAC
	Rhea

	III Appendices
	Tools
	stereo
	Entry Points
	Decomposition of Stereo

	disparitydebug
	point2dem
	point2mesh
	orbitviz
	isis_adjust
	bundlevis
	cam2map4stereo.py

	The stereo.default File
	Preprocessing
	Correlation
	Filtering
	Post-Processing

	Guide to Output Files
	Modifying SURF to output VW match files
	How to apply and compile
	Example of using SURF

	Bibliography

